Finding carbon in city soils

Edmondson, J.L., Davies, Z.G., McCormack, S.A., Gaston, K.J. & Leake, J.R. 2014. Land-cover effects on soil organic carbon stocks in a European city. Science of the Total Environment 472, 444-453.

Soil is the vital foundation of terrestrial ecosystems storing water, nutrients, and almost three-quarters of the organic carbon stocks of the Earth’s biomes. Soil organic carbon (SOC) stocks vary with land-cover and land-use change, with significant losses occurring through disturbance and cultivation. Although urbanisation is a growing contributor to land-use change globally, the effects of urban land-cover types on SOC stocks have not been studied for densely built cities. Additionally, there is a need to resolve the direction and extent to which greenspace management such as tree planting impacts on SOC concentrations. Here, we analyse the effect of land-cover (herbaceous, shrub or tree cover), on SOC stocks in domestic gardens and non-domestic greenspaces across a typical mid-sized U.K. city (Leicester, 73 km2, 56% greenspace), and map citywide distribution of this ecosystem service. SOCwas measured in topsoil and compared to surrounding extra-urban agricultural land. Average SOC storage in the city’s greenspace was 9.9 kg m−2, to 21 cm depth. SOC concentrations under trees and shrubs in domestic gardens were greater than all other land-covers, with total median storage of 13.5 kg m−2 to 21 cm depth, more than 3 kg m−2 greater than any other land-cover class in domestic and non-domestic greenspace and 5 kg m−2 greater than in arable land. Land-cover did not significantly affect SOC concentrations in non-domestic greenspace, but values beneath trees were higher than under both pasture and arable land, whereas concentrations under shrub and herbaceous land-covers were only higher than arable fields. We conclude that although differences in greenspace management affect SOC stocks, trees only marginally increase these stocks in non-domestic greenspaces, but may enhance them in domestic gardens, and greenspace topsoils hold substantial SOC stores that require protection from further expansion of artificial surfaces e.g. patios and driveways.