Road verge ecosystem services

Phillips, B.B., Bullock, J.M., Osborne, J.L. & Gaston, K.J. 2020. Ecosystem service provision by road verges. Journal of Applied Ecology, in press.

1. Roads form a vast, rapidly growing global network that has diverse, detrimental ecological impacts. However, the habitats that border roads (‘road verges’) form a parallel network that might help mitigate these impacts and provide additional benefits (ecosystem services; ES).

2. We evaluate the capacity of road verges to provide ES by reviewing existing research and considering their relevant characteristics; area, connectivity, shape, and contextual ES supply and demand. We consider the present situation, and how this is likely to change based on future projections for growth in road extent, traffic densities and urban populations.

3. Road verges provide a wide range of ES, including biodiversity provision, regulating services (e.g. air and water filtration) and cultural services (e.g. health and aesthetic benefits by providing access to nature), but also displace other habitats and provide ecosystem disservices (e.g. plant allergens and damage to infrastructure). Globally, road verges may currently cover 270,000 km2 and store 0.015 Gt C year‐1, which will further increase with 70% projected growth in the global road network.

4. Road verges are well placed to mitigate traffic pollution and address demand for ES in surrounding ES‐impoverished landscapes, thereby improving human health and wellbeing in urban areas, and improving agricultural production and sustainability in farmland. Demand for ES provided by road verges will likely increase due to projected growth in traffic densities and urban populations, though traffic pollution will be reduced by technological advances (e.g. electric vehicles). Road verges form a highly connected network, which may enhance ES provision but facilitate the dispersal of invasive species and increase vehicle‐wildlife collisions.

5. Synthesis and applications. Road verges offer a significant opportunity to mitigate the negative ecological effects of roads and to address demand for ecosystem services (ES) in urban and agricultural landscapes. Their capacity to provide ES might be enhanced considerably if they were strategically designed and managed for environmental outcomes, namely by optimizing the selection, position and management of plant species and habitats. Specific opportunities include reducing mowing frequencies and planting trees in large verges. Road verge management for ES must consider safety guidelines, financial costs and ecosystem disservices, but is likely to provide long‐term financial returns if environmental benefits are considered.