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Abstract

Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to
worldwide tree planting schemes. Since soils hold ,75% of ecosystem organic carbon, understanding the effect of urban
trees on soil organic carbon (SOC) and soil properties that underpin belowground ecosystem services is vital. We use an
observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties
(to 1 m depth) compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service
provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is
genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed
woodland. Tree cover type does not influence soil bulk density or C:N ratio, properties which indicate the ability of soils to
provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study
suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from
genus-specific pathogens must also be considered.
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Introduction

Urban ecosystems provide vital goods and services to the

inhabitants of cities and towns [1]. Urban trees are especially

important in providing a diverse range of ecosystem services.

These include organic carbon storage [2]; flood mitigation and

improved water quality [3]; filtration of atmospheric pollutants,

especially removing health-damaging fine particulates such as

PM10 [4], [5], and particulate-bound carcinogenic polycyclic

aromatic hydrocarbons [6]; absorption of toxic gasses including

O3, SO2 and NOX [7]; traffic noise pollution reduction [8]; and,

amelioration of the urban heat island effect [9–11]. In addition,

urban trees and greenspaces provide wildlife habitat and aesthetic

values that further contribute benefits to human wellbeing, quality

of life and health [12–14]. Trees are a ubiquitous part of cities and

towns, and have been estimated to cover between 10–67% of

urban and community areas in the USA [3] and 20% of Greater

London, UK [5].

The recognized importance of trees for ecosystem service

provision has stimulated global efforts to increase tree cover in

urban areas, for example ‘The Big Tree Plant’ in England run by

DEFRA and the Forestry Commission [15], and the private-public

run ‘MillionTreesNYC initiative’ in New York, USA [16]. However,

these initiatives have been conducted without a clear understand-

ing of the effects of urban trees on provision of ecosystem services

belowground. Given that approximately 75% of ecosystem carbon

storage occurs in soils [17], [18], the net effect of trees on soil

organic carbon (SOC) stores is particularly important since, in

addition to providing a sink for atmospheric carbon dioxide fixed

by photosynthesis, SOC is positively associated with regulating

and supporting ecosystem services such as storm-water infiltration

and nutrient holding capacity [19]. Without an assessment of the

impact of tree planting on SOC and other soil properties that

deliver ecosystem service benefits in an urban context it is not

possible fully to understand the implications of this widespread

management practice.

Trees can influence the biological, chemical and physical

properties of soils directly through their deep roots and litter

quality and quantity [20]. Changes in soil properties following

afforestation are varied and dependent on former land-use and

species, particularly whether broadleaved angiosperms or gymno-

sperms like pines [21], [22]. Previous studies on arable land, which

has strongly depleted SOC stocks [23], have shown afforestation

typically results in increased carbon sequestration both above and

belowground [22]. Furthermore, the English national SOC

inventory reports greater storage under woodland (primary and

afforested) than pasture [24]. The UK Countryside Survey found

lower soil bulk density (BD) values beneath woodland compared to

improved grasslands [25], indicating a greater capacity of

woodland soils to absorb sustained heavy rainfall and reduce

run-off and flooding. As these countrywide survey habitats will

include agricultural grasslands that have been ploughed and

reseeded, they include soils that have previously been depleted in
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SOC and experienced increased BD prior to tree planting, as well

as ancient woodlands.

Recent studies have shown that urban soils hold much higher

concentrations of SOC than typical arable fields, into the same

range as semi-natural grasslands and woodlands [26], [27]. The

extent to which urban trees can increase SOC stocks over those of

urban grasslands is currently unknown, as is the relative

importance of different major urban tree genera. This knowl-

edge-gap is strategically important with the rising pan-European

threats to keystone urban tree species from virulent pests and

diseases, including Ash dieback, Oak decline and Oak Proces-

sionary Moth [28–30]. Here, we use an observational study in

urban parks to examine differences in soil properties (SOC, C:N

ratio, and BD) beneath three tree genera (Acer spp., Fraxinus

excelsior, and Quercus robur) selected for their abundance and

capacity to grow into large specimens, and mixed urban

woodlands in comparison to adjacent urban grassland soil. We

test the hypothesis that SOC stocks and C:N ratios would be

increased in soil under trees compared to grassland, paralleling

and positively correlating with greater above-ground carbon

storage, whereas soil BD would be reduced under trees compared

to grassland as seen in semi-natural ecosystems [25].

Methods

Study area
This research focussed on Leicester, a mid-sized UK city,

located in the East Midlands of England (52u389N, 1u08W). It has

a human population of 310,000 [31], and covers an area of

approximately 73 km2. The region has a temperate climate,

receiving 620 mm of precipitation each year and average annual

daily minimum and maximum temperatures of 6.1uC and 13.9uC,

respectively [32]. Soil types within the city are dominated by deep

clays, deep loam and seasonally wet deep clays and loam,

according to the National Soil Map for England and Wales

produced by Cranfield University. The soil types sampled in the

city were: Hanslope, Whimple, Salop, Beccles 3, Ragdale and

Fladbury 1.

Sampling strategy
A GIS was used to select randomly urban parks for soil sampling

within the city of Leicester and permission was granted for the

work by the Leicester City Council. The land-use history of each

park was assessed in a GIS using the series of historic Ordnance

Survey maps dating back to 1887. No park had previously been

built upon, one park and two country houses and grounds that

went on to form parks were in existence in 1887, the remainder

were agricultural land at this time. Over the following years to the

present day the remainder of the parks were established as the city

expanded into the surrounding agricultural landscape, with the

two recent parks developed on farmland within the last 20–30

years (see Table S1 for site specific land-use history). At each park

an initial assessment was made for the presence of individual trees

that ranged in size from saplings to large mature specimens within

our target genera, specifically isolated specimens of Quercus robur,

Fraxinus excelsior, Acer spp. (comprised of Acer pseudoplatanus and Acer

platanoides), or patches of mixed woodlands. The selected trees

ranged in diameter at breast height (DBH) from 2.5 cm to 197 cm

and in biomass from 1.3 kg to 61 tonnes for the largest mature Q.

robur specimen (see Table S1). The tree genera were selected

because of their importance in parks in Leicester and national

abundance, Q. robur being the commonest tree and F. excelsior the

second most common as an individual tree or within small patches

of woodland in Great Britain [33]. A. pseudoplatanus is the fourth

most common tree species in small patches of British woodland

[33].

Where a park contained one or more of the tree genera and/or

mixed woodland at least one grassland site was also identified for

sampling. Each grassland site was situated in proximity to the tree

sites identified, but was also over 50 m from any individual or

patch of trees, to ensure that it was outside the influence of the

trees. A GIS layer obtained from Leicester City Council was used

to check that management at each grassland site was uniform,

specifically that the regularity of mowing at all sites was

approximately 25 times per year, these park grasslands were not

irrigated nor did they receive any fertiliser input. The grassland

sites were selected to act as a direct comparison (or paired sample)

at each specific location (park) with the tree sample.

At each site, tree species, height and DBH were recorded within

a 565 m quadrat centred on individual isolated trees within

grassland or in mixed woodland. Soils were sampled in

approximately 7 cm increments to 1 m depth [26], the reference

depth for the national SOC inventory [21], [24], under target tree

genera, mixed woodland and grasslands. Under isolated trees soil

samples were taken within 1 m of the trunk to ensure that all

samples were taken beneath the canopy of even the small

immature trees. In total, soils were sampled beneath 12 specimens

of Quercus robur, 11 of Fraxinus excelsior, 12 of Acer spp. In addition

soils were sampled beneath mixed urban woodland at 8 sites, and

urban grassland at 15 sites.

In addition to the three target tree genera specified a further six

species; Acer campestre, Corylus avellana, Crataegus monogyna, Salix caprea,

Tilia x europaea were identified in the mixed urban woodlands.

Measured tree DBH and height were used to estimate above-

ground biomass with allometric equations. For each species, where

multiple equations were available they were combined to produce

a generalised biomass prediction. Where species-specific equations

did not exist genus level equations were used, following the

methodology recently used to derive tree aboveground biomass

across the city of Leicester [2]. However, allometric equations to

predict biomass of urban trees specifically are scarce [34], thus

those used were derived from European and North American

forested ecosystems [2], [35–37].

Soil sample preparation and analysis
Soil samples were analysed for SOC, C:N ratio and BD using

established procedures. In brief, soil samples were dried at 105uC
for 24 hours, weighed, ball milled to homogenise, and passed

through a 1 mm sieve [26]. Soil BD (g cm23) was calculated after

removing the dry weight of matter greater than 1 mm [38]. Soils

were analysed in duplicate for total N concentration (mg g21) in a

CN analyser [26]. Inorganic carbon was removed from 2.5 g of

soil sample by adding 10 ml 5.7 M HCl, samples were centrifuged

at 1800 g for 10 minutes, supernatant discarded and dried at

105uC. Subsequent CN analysis in duplicate determined SOC

concentration (mg g21) [26].

Statistical analysis
All dependant variables (SOC Concentration, SOC Density,

Soil C:N & Soil Bulk density) were checked for normality and

homoscedasticity, and log transformed where necessary. Each of

these dependant variables was analysed using general linear mixed

effects models. The maximal model included vegetation cover as a

5 level fixed factor (urban grassland, Q. robur, F. excelsior, Acer spp.

and mixed woodland). Soil depth (at which the sample was taken)

and the biomass of the individual tree in proximity to the soil

sample or in mixed woodland the biomass of all trees within the

565 m quadrat were incorporated as covariates in the model, and
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urban park identity was included as a random (intercept) factor to

account for differences in length of time since park establishment

and geographic location within the city. Initial models included

tree biomass as a variable, however this had no predictive power

(as the confidence intervals spanned zero) for any measured soil

property and therefore it was removed as a variable from all

subsequent models. In all cases model simplification was attempted

by comparing all possible simpler model subsets using Akaike’s

information criterion (AIC). The maximal model, containing all

the predictor variables, was always found to be the top model

(based on AIC) and used in the subsequent inferences. Pseudo R2

values were calculated using the methods of Nagelkerke [39].

Mixed models were carried out using package lme4. F and p

values were calculated using Satterthwaite approximations [40] to

determine denominator degrees of freedom in package lmerTest.

All tests were carried out in the R language and environment [41].

Raw data are available in Table S1.

Results

There were significant differences in SOC concentration and

amount per soil volume (SOC density) between the three tree

genera, mixed urban woodland and grassland (F = 9.95, p,0.001;

and F = 12.51, p,0.001, respectively). Soil depth had a strong

effect on SOC concentration (F = 609.89, p,0.001) and density

(F = 456.27, p,0.001). Median SOC concentration and density

were greatest beneath F. excelsior throughout the depth profile,

followed by Acer spp., with no difference between Q. robur, mixed

woodland, and grassland (Fig. 1). Model pseudo R2, including

both soil depth and tree cover, explained 59% and 57% of

variation in SOC concentration and density respectively. Esti-

mates of total SOC storage, based on summed median values for

each depth category, ranged from 14–26 kg SOC m22 with lowest

storage beneath Q. robur, mixed woodland, and grassland, and the

highest under F. excelsior (Fig. 1). The explanatory power of the

mixed effects model for C:N ratio was low, with a pseudo R2

explaining only 11% of the variation in the data (soil depth

F = 20.74, p,0.001; vegetation cover F = 7.579, p,0.001). The

effect of trees on BD was not significant (F = 1.24, p = 0.295). Soil

depth was the most important predictor of BD (F = 244.35, p,

0.001, model pseudo R2 = 49%), with increased median BD with

depth from 0.99–1.59 g cm23 between 0–20 cm to 80–100 cm

(Fig. 2). The mixed effects models including tree biomass as a

variable (excluding grassland as this cover type has no woody

biomass) revealed that the effect size of tree biomass on SOC, C:N

ratio and BD was small, and as confidence intervals spanned zero

had no predictive power (see Table S2 for model statistics).

Discussion

Previous research in a typical UK city, Leicester, has shown that

97% of carbon present in aboveground ecosystem biomass is

found in trees, with average storage increasing from 0.2 kg m22 in

herbaceous vegetation (most commonly urban grassland) to

28.5 kg m22 in trees [2], affirming the importance of urban trees

in aboveground carbon sequestration. In contrast we found that

differences in SOC under trees compared to grassland were more

modest and genus-specific and, surprisingly, did not occur under

mixed woodland or Q. robur, even though several specimens of the

latter had a trunk diameter of over 1.5 m. No significant

differences in SOC concentration beneath urban forests and

grasslands were found in Baltimore, USA [42], corresponding with

Figure 1. Soil organic carbon storage within each 20 cm depth category (summed median values are displayed in text boxes,
values in parenthesis are total 25th and 75th percentiles), beneath Quercus robur (n = 12), Fraxinus excelsior (n = 11), Acer spp. (n = 12),
mixed woodland (n = 8) and grassland (n = 15) by depth class. The horizontal line within the box indicates median, box boundaries indicate
25th and 75th percentiles, whiskers indicate highest and lowest values, horizontal lines above or below whiskers indicate outliers.
doi:10.1371/journal.pone.0101872.g001
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our findings for mixed woodlands. Nonetheless, we did find

increased SOC storage under F. excelsior and, to a lesser extent, Acer

spp., with gains of 11 kg m22 and 5 kg m22 respectively

compared to the adjacent grasslands (Fig. 1).

The effects of F. excelsior are of particular interest in light of

current concerns about the impact of ash die-back disease on this

widespread and abundant species in Europe and the UK, where it

is the second most abundant tree in small woodland patches and

the second most common individual tree in the countryside [33].

A. pseudoplatanus and F. excelsior are mesophilic species that thrive on

well-watered alluvial soils, but the former is more drought

susceptible [43]. The clear SOC enrichment throughout the soil

profile under F. excelsior, especially from 40–100 cm depth, could

be attributed to several factors. This species produces a greater

root mass than A. pseudoplatanus and Q. robur, and establishes its

extensive deep root network more quickly than other broadleaved

species [44], and is especially well adapted to clay-rich soils such as

those found in Leicester. Organic carbon introduced by tree roots

into clay rich subsoils will experience long residence times [45].

Compared to park grassland, none of the tree genera or mixed

woodland altered soil BD, which is consistent with previous reports

of the absence of effects of broadleaved trees planted in pasture

[46]. However, the urban trees could still aid storm-water drainage

along root channels [20]. Similarly, soil C:N ratio, one of the

major controls of N availability and leaching [47], was also

unaffected by trees.

These data highlight the often overlooked importance of urban

park grasslands as contributors to belowground ecosystem service

provision, particularly SOC storage, which we show exceeds

typical values for agricultural grassland by 23% [24]. Urban park

management may reduce litter inputs from trees relative to

grassland as mowings are not collected but autumn leaves are

removed from beneath individual trees. However, it remains

unclear how important these management practices are as leaves

were not removed from beneath the stands of mixed woodland we

sampled, yet these showed no significant increase in SOC storage

compared to adjacent grassland. Carbon inputs into the soils

under grassland and park trees are likely to be strongly influenced

by roots. Mean residence time of root carbon in soil is typically 2.4

times that of shoot carbon, due to higher concentrations of the

more recalcitrant components such as lignin, so that SOC is often

mainly derived from root inputs [48].

This observational study aimed to provide a first indication of

the long-term effect of trees in urban areas on soil properties. As

our approach was non-experimental we cannot be certain whether

the sampled trees were planted or naturally regenerated from seed,

and we have to assume that any differences in soil conditions

under trees and adjacent grassland are due to the trees. However,

our strategy of sampling soil under trees of very different sizes

enabled us to investigate if there were any relationships between

tree size (as a proxy for tree age) and soil properties across a range

of urban parks. Indeed, given the range of tree sizes we studied,

the trees will likely have ranged in age from a decade to several

centuries- a timespan difficult to achieve in experimental

manipulation studies. Perhaps one of the most surprising findings

arising from this was the absence of clear effects of tree size on soil

carbon storage, especially for oaks where the largest individuals

were 1.6 m–2.0 m DBH.

Tree planting within urban areas is one of a range of

environmental management techniques used which impact, either

intentionally or unintentionally, on ecosystem service provision

[1]. Although tree planting is known to increase ecosystem service

provision aboveground [2–14], we now show for the first time for

urban trees that this benefit does not consistently extend into the

soil system as, contrary to our original hypotheses, there is no

direct relationship between aboveground tree biomass and SOC

concentration, soil C:N ratio and soil BD.

We demonstrate the importance of targeted tree genus selection

to maximise the long-term belowground ecosystem service benefits

of urban tree planting with respect to SOC. Further research

should seek to elucidate the belowground effects of other common

tree species on a range of soil types and climate zones across urban

areas globally, better to inform urban policy and planning. Our

findings that F. excelsior makes an important contribution to

enhancing urban SOC stocks coincides with the first record of ash

dieback disease spreading into our study region (Leicestershire)

[49]. This raises important questions about the likely future

impacts of loss of this species on SOC stocks nationally.

Furthermore, it highlights the importance of long-term planning

in cities and towns to couple the ecosystem service benefits of tree

planting with disease and climate change resilient urban tree

populations in the future.

Supporting Information

Table S1 Raw data file.

(XLSX)

Table S2 Results from mixed effect model and model
averaging for models including tree biomass.

(DOCX)
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