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Landscape structure and fragmentation have important
effects on ecosystem services, with a common assump-
tion being that fragmentation reduces service provision.
This is based on fragmentation’s expected effects on
ecosystem service supply, but ignores how fragmenta-
tion influences the flow of services to people. Here we
develop a new conceptual framework that explicitly
considers the links between landscape fragmentation,
the supply of services, and the flow of services to people.
We argue that fragmentation’s effects on ecosystem
service flow can be positive or negative, and use our
framework to construct testable hypotheses about the
effects of fragmentation on final ecosystem service pro-
vision. Empirical efforts to apply and test this framework
are critical to improving landscape management for
multiple ecosystem services.

Landscape fragmentation: the need to reconceptualize
for ecosystem services
Humans continue to heavily modify natural ecosystems
around the world, with negative consequences for biodiver-
sity (see Glossary) and natural capital [1,2]. At the same
time, demand for ecosystems to provide benefits, or services,
to society is growing rapidly [3]. This has significantly in-
creased the need to understand and manage landscapes
simultaneously for ecosystem services and biodiversity. Re-
cently, the potential of managing landscape structure [4–6],
and in particular landscape fragmentation [7,8], for these
multiple goals has been highlighted. Interest in landscape
fragmentation – the breaking apart of areas of natural land
cover into smaller pieces independent of a change in the
amount of natural land cover – has a long history in ecology
[9]. Consequently, a well-developed understanding exists of
its effects on biodiversity and ecosystem functioning
[10]. However, the shift in research interest from biodiversity
toward the concept of ecosystem services has recast what
before were solely ecological questions into social–ecological
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Glossary

Benefit: the ways in which ecosystems improve human well-being via the

provision of ecosystem services. Constituents of human well-being include

materials essential for life and contributions to health, security, social relations,

and freedom of choice and action [76].

Biodiversity: the variability among living organisms from all sources

including, inter alia, terrestrial, marine, and other aquatic ecosystems and

the ecological complexes of which they are part; this includes diversity within

species, between species, and of ecosystems. Defined here following the

1993 Convention on Biological Diversity (CBD) meaning of ‘biological

diversity’, which we assume to be equivalent to ‘biodiversity’ (http://www.

cbd.int/convention/articles).

Connectivity: the degree to which a landscape facilitates the movement of

organisms and matter [77]. We use the term to include both biotic connectivity

(movement of organisms) and abiotic connectivity (movement of water,

nutrients, and soil) across landscapes.

Ecosystem function: the flow of energy and materials through the arrange-

ment of biotic and abiotic components of an ecosystem that allows or could

allow natural systems to provide ecosystem services [78].

Ecosystem service: defined broadly, the biophysical and social conditions and

processes by which people, directly or indirectly, obtain benefits from

ecosystems that sustain and fulfill human life [76].

Ecosystem service demand: the level of service provision desired or required

by people. Demand is influenced by human needs, values, institutions, built

capital, and technology [15].

Ecosystem service flow: the delivery of an ecosystem service to people or its

realization. Ecosystem service flow depends on both the supply of and

demand for a service [14,15] as well as the movement of organisms, matter,

and people [4].

Ecosystem service supply: the full potential of ecological functions or

biophysical elements in an ecosystem to provide a given ecosystem service,

without consideration of whether humans recognize, use, or value that

function or element [14,15].

Landscape: a heterogeneous area comprising interacting ecosystems that are

repeated in similar form throughout, including both natural and anthropogenic

land cover, across which humans interact with their environment [79].

Landscape fragmentation: the breaking apart of areas of natural land cover

into several smaller areas within a human-dominated matrix, independent of

any change in the area of natural land cover [9].

Landscape heterogeneity: the amount of variation in landscape structure

(composition and configuration) at a particular spatial scale across a land-

scape. Landscape heterogeneity is affected by landscape fragmentation

through changes to patterns of spatial complexity.

Landscape matrix: the portion of the landscape that surrounds fragments of

natural land cover. In most cases we consider the matrix to be the human-

dominated or -disturbed areas of the landscape (e.g., agricultural fields, urban

areas, cleared land). Characteristics of the matrix can be important for

determining landscape connectivity and ecosystem service flow.

Landscape structure: the arrangement of land cover and land use across a

landscape. Broadly, it includes landscape composition (how much of each land

cover or land use that exists), configuration (the spatial pattern of these land

cover or land use types), and connectivity.

Natural capital: the stock of natural ecosystems, including all of their
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ones [11–13]. This recasting means that predictions about
the ecological effects of landscape fragmentation on biodi-
versity and ecosystem functioning are unlikely to translate
directly into ecosystem service provision. This will be espe-
cially true if fragmentation has contrasting effects on people
and how they interact with ecosystems to produce ecosystem
services compared with biodiversity and ecosystem function-
ing. It is therefore critical to rethink how fragmentation
alters all of the components of ecosystem service provision
in order to improve landscape management for multiple
services.

Ecosystem service provision depends on three elements
– supply, demand, and flow (Figure 1) – each of which can
respond differently to landscape fragmentation. Ecosystem
service supply is the potential for natural capital to gener-
ate a benefit for people, irrespective of it being realized or
used [14]. In turn, ecosystem service demand is the level of
service provision desired or required by people and is
influenced by human needs, values, cultures, institutions,
and built capital [15]. Finally, for ecosystem service provi-
sion to be realized, people must interact with ecosystems to
gain a benefit. This interaction connects service supply
with demand to produce a service flow: the delivery of a
service to people to be used or enjoyed [15].

Here we argue that the effects of fragmentation on
ecosystem service supply and flow can either complement
or oppose each other, leading to contrasting net effects on
service provision. Ecosystem service supply depends on the
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presence of particular species, ecosystems, or ecological
processes that are often negatively affected by fragmenta-
tion. In contrast, most ecosystem service flows depend on the
distribution and movement of organisms, matter, and peo-
ple between areas of natural and anthropogenic land cover.
For example, fragmentation of forests from logging, road
construction, or agricultural and urban expansion can
alter plant species composition and growth, negatively af-
fecting water quality regulation and carbon sequestration
[16,17]. Simultaneously, this fragmentation can improve
forest access, increasing timber harvesting, hunting, wild
food foraging, and park visits [18,19]. Thus, by altering the
arrangement of areas of service supply and demand, or
humans and natural capital across a landscape, fragmenta-
tion can modify ecosystem service supply, movements criti-
cal for service flow, and, ultimately, service provision.

That landscape fragmentation simultaneously affects
ecosystem service supply and flow has not thus far been
widely acknowledged in the development and application
of the ecosystem service concept. Most ecosystem service
studies that consider fragmentation focus on service sup-
ply only [4,20] and disregard demand and flow. Similarly,
most ecosystem service decision-support and quantifica-
tion tools focus on service supply and have limited
ability to determine flow [21]. While tools such as InVEST
(http://naturalcapitalproject.org/InVEST.html) and ARIES
(http://ariesonline.org) aim to better quantify service
flows across landscapes, integration of this information into
Demand
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Box 1. What is landscape fragmentation and how does it

affect ecosystem service flow?

Landscape fragmentation is the breaking up of larger areas of

natural land cover into smaller, more isolated patches, independent

of a change in the total area of natural land cover (see Figure 2 in

main text). Landscape fragmentation causes three main intercon-

nected changes to patches of natural land cover across a landscape:

(i) an increase in the isolation of patches and their interspersion with

the surrounding human-dominated land (e.g., agricultural or urban

areas); (ii) an increase in the number of patches and the amount of

patch edge; and (iii) a decrease in average patch area [9]. Simulta-

neously, the surrounding human-dominated portion of the land-

scape can become more connected as fragmentation proceeds, with

important consequences for the movement and abundance of

species that inhabit this portion of the landscape [52,80].

Thus, landscape fragmentation results in numerous interrelated

effects on landscape structure, including changes to landscape

configuration and heterogeneity. This means that various mechan-

isms of and effects on ecosystem service flow are possible (see

Figure 2 in main text). Fragmentation affects ecosystem service

flows by facilitating or interrupting movement of organisms, matter,

energy, and people across landscapes. This includes the daily

movements of mobile organisms like pollinators and insect

predators across agricultural landscapes, long-distance migrations,

directional overland flows of water and the nutrients, pollutants, and

eroded soil it contains; ocean and atmospheric currents at multiple

spatial scales, and the movement of people across landscapes. The

final effect of fragmentation on service provision will depend

heavily on these processes and the key species, ecosystem

functions, biophysical flows, and human activities that underlie

each service, as well as the exact form and amount of landscape

fragmentation that takes place. Additionally, the scale at which

fragmentation occurs relative to ecosystem service flow will also

change how it affects service provision.
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decision making remains limited and mainly focused on
service supply. Consequently, predictions about how land-
scape fragmentation will affect ecosystem service provision
are likely to be incorrect. This has important implications for
landscape planning to optimize service provision.

To spur research in this area, we present a conceptual
framework that links fragmentation explicitly with eco-
system service supply and flow and use it to make testable
predictions about the effects of landscape fragmentation
on ecosystem service provision. We discuss how fragmen-
tation could drive trade-offs and synergies among services,
highlighting the implications for policy and planning,
and identify future research priorities for investigating
the role of landscape fragmentation in ecosystem service
provision.

Linking fragmentation to ecosystem service supply and
flow
Here we identify specific mechanisms by which landscape
fragmentation, independent of the loss of natural land
cover, affects service supply and flow (Figure 1) and the
ultimate consequences of these relationships for service
provision. A planning issue of critical importance in many
human-dominated landscapes is how to spatially arrange
areas of natural land cover within the human-dominated
matrix [22,23]. While we recognize that alteration of the
spatial arrangement of natural land cover also has impor-
tant consequences for landscape heterogeneity, our frame-
work simplifies this complexity by focusing on
fragmentation of natural land cover. We feel this is a
necessary first step to better develop a spatially explicit
landscape-scale understanding of ecosystem services.

Fragmentation and ecosystem service supply

Fragmentation tends to drive biodiversity loss and shifts in
ecosystem function [24,25], although various responses can
occur, especially at low or intermediate levels of fragmen-
tation [9]. Fragmentation often reduces the ability of plant
and animal species to move across landscapes, interrupt-
ing daily movements between foraging and breeding habi-
tat, dispersal events, and migration [10]. In addition,
smaller habitat patches support fewer species, contain
smaller populations that are at greater risk of extinction
[26], and have increased edge effects that can negatively
affect the persistence of native species [27]. Each of these
different effects of fragmentation can result in degradation
of the natural capital and biodiversity that contribute to
service supply (Figure 1).

There is widespread evidence that biodiversity influ-
ences or is strongly correlated with the supply of many
ecosystem services [28,29]. For example, increased tree
species richness [30] and plant diversity [6] are each
associated with an increased supply of multiple ecosystem
services. In particular, biodiversity is increasingly impor-
tant as the number of services considered increases
[31]. Thus, if biodiversity declines with landscape fragmen-
tation, as is commonly observed [10], ecosystem service
supply is also likely to be lost.

Pollination and pest regulation are among the best-
studied examples where landscape fragmentation drives
this relationship. Increased species and functional diversity
192
in pollinator or arthropod predator communities can in-
crease service supply [32,33]. In turn, this diversity can be
enhanced by increased forest and grassland connectivity
or increased landscape complexity (smaller fields, more
hedgerows) across agricultural landscapes [34,35]. Frag-
mentation can also affect forest plant diversity and the
supply of carbon storage and sequestration [17,36], al-
though this effect is not universal [37]. Similarly, frag-
mentation of marine ecosystems and rivers can have
significant effects on aquatic biodiversity and the fish
abundance important for commercial fisheries [38,39]. Un-
fortunately, most of these examples only quantify service
supply and not flows to people, which might be affected
very differently by fragmentation.

Fragmentation and ecosystem service flow

For most ecosystem services, their flow depends on the
movement of organisms, matter, energy, and/or people
across landscapes to connect spatially separate locations
of supply and demand (Figure 1) [20]. For example, polli-
nation depends on the movement of native pollinators from
fragments of non-crop vegetation into fields [40], drinking
water provision relies on the flow of above- and below-
ground water to areas of collection or consumption [41],
and the movement of people to fishing locations or parks is
needed for fisheries and recreation [42]. Conversely, some
services depend on ecosystems restricting flows of organ-
isms or matter. For example, flood regulation is provided
when ecosystems restrict or delay water flow [43], disease
regulation when the movements of disease vectors to
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people are limited [44], and water quality regulation when
ecosystems capture or transform excess nutrients, sedi-
ments, or pollutants [41].

Because ecosystem service flow relies on facilitating or
restricting movement, landscape fragmentation can affect
the magnitude and spatial pattern of these flows (Box 1)
[20]. Importantly, fragmentation increases the intersper-
sion of natural and anthropogenic land, reducing distances
between areas of service supply and demand and poten-
tially increasing service flow. Simultaneously, fragmenta-
tion affects the number, size, shape, spatial arrangement,
and isolation of patches of natural land cover, which in turn
can positively or negatively affect the flow of soil, water,
energy, and organisms across landscapes [4]. Thus, frag-
mentation can have either negative or positive effects on
service flow depending on the service in question, the
process of landscape fragmentation, and the resulting
landscape structure (Box 1). In addition, the flow of some
ecosystem services will be insensitive to fragmentation.
For example, carbon sequestration and storage provides
climate regulation globally regardless of its spatial location
or the location of beneficiaries.
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Expansion of human land use resulting in the fragmenta-
tion of natural land cover can place areas of service supply
and demand in closer proximity to one another. For ser-
vices that rely on the juxtaposition of ecosystems and
people, this can increase service flows (Figure 2A). Services
provided by mobile organisms often fall into this category.
For example, interspersion of remnant forests and grass-
lands with cropland can maximize both pollination and
pest regulation services [45]. Small reservoirs of regularly
placed natural land cover that provide shelter and nesting
resources can more evenly distribute pollinators across
agricultural landscapes and are predicted to maximize
the flow of pollination services [22]. Similarly, regularly
spaced forest patch and hedgerow reservoirs of arthropod
predators are needed to ensure an even flow of pest regu-
lation to agricultural fields [46,47].

Increased fragmentation can also improve people’s
access to ecosystems to obtain recreational and health
benefits. Increased visitation to parks and previously
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inaccessible wilderness areas when roads and trails are
built can increase fishing, hunting, timber harvesting, and
land clearing [18,19]. Similarly, in urban areas having
nearby green spaces increases accessibility and can
improve human health and well-being [48,49]. We predict
that these effects of fragmentation on patterns of human
movement, while often overlooked in the literature [4], will
be as common and important for ecosystem service flow as
those on the movement of other organisms.

Increased interspersion of people, their activities, and
ecosystems can also increase flows of ecosystem disservices
(damages or costs to people from ecosystems). For example,
the spread of human diseases via biotic vectors is often
greater when human habitation occurs in close proximity
to natural areas. For Lyme disease in North America,
increased interspersion of people and forests is highly
correlated with disease prevalence [50,51].

Increased isolation of patches of natural land cover

By isolating patches of natural land cover and reducing
patch sizes, fragmentation can have negative effects on the
movement of organisms and matter (Figure 2B). This is
especially true if the intervening matrix impedes move-
ment between patches. For services provided by mobile
organisms [52], including pollination and seed dispersal,
isolation can negatively affect service flow. For example,
seed dispersal can be highly sensitive to forest fragmenta-
tion by agriculture, especially the loss of small forest
patches that maintain landscape connectivity [53]. Services
that rely on the movement of water can also be dispropor-
tionately affected. The presence of dams has fragmented
most of Earth’s major river systems, reducing water flow
and the movement of people along these rivers, altering
water provision to people, water quality regulation [54],
and opportunities for recreation [55,56].

Decreased patch size and increased edge

Reduced patch size can decrease visitation rates and
ecosystem service flows for both organisms and people
Box 2. Combining the effects of fragmentation on ecosystem se

Our conceptual framework predicts that a range of relationships

between landscape fragmentation and final ecosystem service

provision are possible depending on the specific processes by which

fragmentation affects service supply and flow (see Figure 3 in main

text). While a range of effects is likely, we identify three general

categories of effect.

� Double whammy: Fragmentation negatively affects both supply

and flow, resulting most often in rapid and dramatic decreases in

ecosystem service provision with fragmentation. We predict this

relationship for services where reduced connectivity and decreased

patch size drive reductions in service flow (e.g., water provision and

regulation, watercourse recreation, and pollination and pest

regulation at high levels of landscape fragmentation).

� Compensating: The effects of fragmentation on flow oppose those

on supply, resulting in increased service provision at intermediate

levels of fragmentation. The exact level of fragmentation that

maximizes service provision depends on the strength and shape of

the relationship between fragmentation and service flow. Services

where interspersion of natural land cover and human-dominated

areas determines service flow should respond in this way (e.g.,

recreation, cultural and aesthetic services, genetic resources,

pollination, pest regulation).
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(Figure 2C). For example, smaller fields often experience
less pollinator visitation compared with larger fields, with
consequences for pollination and other services provided
by mobile organisms [34,57]. Similarly, small parks attract
fewer visitors from surrounding urban areas [58], reducing
recreation [59] and other cultural services.

For those services that depend on restricting movement,
increases in edge and edge:area ratio can have various
effects, either reducing or increasing service flow to people
(Figure 2D). For example, fragmentation of areas of
natural land cover by agriculture can result in greater
vegetation-field edge and increased soil erosion [60,61]
and nutrient loss [62,63], with consequences for down-
stream water quality. Contrastingly, linear patches of
vegetation such as hedgerows can fragment the cropland
matrix of agricultural landscapes, intercepting pesticides
and odors and increasing air quality regulation
[64,65]. Other directionally-provided ecosystem services
such as storm protection and flood regulation might also
be improved by more linear wetlands [66].

Consequences for ecosystem service provision

The varied processes by which fragmentation affects land-
scape structure and heterogeneity, and thereby service
flow, means that fragmentation’s effects on supply and
flow can be in parallel or opposition. We argue that this
will result in various landscape-scale fragmentation effects
on the provision of different services and hypothesize that
three broad categories of effects are possible (Box 2). For
example, when the effects of fragmentation on supply and
flow oppose each other, service provision will peak at
intermediate levels of fragmentation (Figure 3F). These
three categories of relationships provide testable predic-
tions of the effects of fragmentation on service provision.

The diverse effects of fragmentation on service provision
will also drive positive and negative relationships between
services in fragmented landscapes as each responds differ-
ently to the modified landscape structure, even if the ser-
vices themselves do not interact strongly [67]. Importantly,
rvice supply and flow

� Supply driven: Ecosystem service flows are insensitive to fragmen-

tation; therefore, final service provision is simply a function of the

effects of fragmentation on service supply. Examples include

carbon sequestration, carbon storage, and the existence value of

biodiversity.

Because there is a wide range of possible patterns of ecosystem

service provision with fragmentation, this will drive synergies and

trade-offs between services in fragmented landscapes. For example,

services that respond in double-whammy or supply-driven ways to

fragmentation might show positive relationships across landscapes

as fragmentation varies. Of course, variation in the strength of these

relationships will also occur (e.g., blue versus red lines in Figure 3E in

main text). Contrastingly, trade-offs might occur among services

following a compensating relationship. Here, the strength of the

trade-offs between services will depend on the level of fragmentation

and resulting landscape structure. Trade-offs and synergies between

services and switches between the two could also occur within the

compensating category as levels of fragmentation vary (e.g., green

broken versus blue unbroken lines in Figure 3F in main text). Thus,

our framework predicts that trade-offs and synergies between

services might not always be unidirectional or constant but will vary

depending on the level of landscape fragmentation.
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Figure 3. Effects of landscape fragmentation on the supply and flow of ecosystem services will affect the final relationship between landscape fragmentation and

ecosystem service provision. Landscape fragmentation, by reducing biodiversity and ecosystem function, is (A) predicted to reduce ecosystem service supply (three

alternative possible trajectories are shown by the red, green, and blue lines). Simultaneously, the amount of flow per unit of ecosystem service supply to beneficiaries can

also be (B) affected negatively, (C) affected positively, or (D) insensitive to landscape fragmentation (e.g., carbon sequestration), with a range of relationships possible (e.g.,

unbroken, broken, and dotted lines). Combining ecosystem service supply and flow multiplicatively (E,F,G) will result in distinct relationships between landscape

fragmentation and ecosystem service provision. Each of the trend lines in (E,F,G) is a combination of the lines in the plots above. Note that some lines overlap in (E) and for

clarity not all possible combinations of supply and flow are shown; the grey lines in (E) show what provision would be if flow was insensitive to fragmentation.
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our framework predicts that trade-offs and synergies be-
tween ecosystem services might not always be unidirection-
al or constant, but could vary depending on the level of
landscape fragmentation. Thus, we predict that managing
landscape structure for ecosystem services does not simply
involve minimizing fragmentation but requires a much
more complete understanding of the effects of landscape
structure on service provision.

Challenges for ecosystem service science and policy
The challenge of incorporating the ecosystem services
paradigm into environmental policy and landscape plan-
ning is increasingly being recognized [68,69]. The next
major challenge is to develop a body of predictive theory
to support policy and planning activities, similar to that
currently present in biodiversity-fragmentation research.
In this context, ecosystem service research needs to move
away from simply quantifying and mapping the biophysi-
cal supply of services [70] and toward identifying locations
of service demand and potential pathways and magnitudes
of service flow [15,20]. Understanding these different
aspects of service provision and what features of landscape
structure, fragmentation, and heterogeneity control them
will significantly improve our ability to manage landscapes
for ecosystem services. Our framework is a first step
toward a more robust theory linking landscape structure
with ecosystem services.

We propose that ecosystem service supply will decline
with increasing fragmentation but that the flow of ecosys-
tem services to beneficiaries can increase or decrease.
Thus, fragmentation of the landscape can either enhance
or degrade ecosystem service provision (Box 2). We also
argue that the responses of ecosystem service flow to
fragmentation are driven by: (i) increased interspersion
of anthropogenic and natural land; (ii) increased isolation
of patches of natural land cover; and (iii) reduced patch size
and increased amounts of edge. These predictions reflect
several important gaps in current knowledge and highlight
numerous key research questions that will best address
them (Box 3). In particular, testing our hypotheses across
landscape gradients of fragmentation by quantifying the
supply, demand, and flow of multiple services is an essen-
tial next step. Only in this way will the mechanisms by
which fragmentation drives both service provision and
trade-offs between services be identified. Describing the
precise form of the relationships between fragmentation
195



Box 3. Outstanding questions

� What are the specific relationships between landscape fragmenta-

tion and ecosystem service supply and flow for different services?

While there is likely to be wide variation in the form of these

relationships, this remains to be quantified. This is a key first step

to creating landscape management tools for ecosystem services

that deal with fragmentation.

� What are the important mechanisms by which fragmentation

affects service flow for different ecosystem services and do these

vary depending on the spatial scale considered? We identify four

potential mechanisms, but their relative importance across different

services is largely unknown. Understanding these mechanisms is

key to creating a predictive framework for the effects of landscape

fragmentation on ecosystem service provision.

� Can the relationships between fragmentation and ecosystem

service flow and final provision be generalized for specific

categories of service? While we identify three broad potential

categories (see Figure 3 in main text), there might be additional

categories or there might be instances where relationships between

services and fragmentation are idiosyncratic depending on the

scale of fragmentation or other biophysical or social factors. While

we hypothesize that this is unlikely, it remains to be tested.

� How are positive or negative relationships between ecosystem

services affected by landscape fragmentation? Our framework

predicts that these relationships might not be constant but could

vary across gradients of fragmentation or landscape structure.

The prevalence and form of these relationships need to be tested

in real landscapes.

� How can the effects of fragmentation on ecosystem service

provision be effectively integrated into decision making? The

causes of fragmentation across landscapes are varied and it can

often be driven by external factors such as demand for ecosystem

services from distant locations. Therefore, effectively integrating

knowledge about the effects of fragmentation into landscape

planning is likely to be difficult and effective paths to do this

remain to be explored.

� What is the most important component of ecosystem service

provision (i.e., supply or flow) to understand with respect to

landscape planning? With limited resources available to investi-

gate how fragmentation affects both service supply and flow,

determining which is most important for landscape management

is critical for efficient decision-making.
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and service provision, and identifying whether distinct
classes of relationship exist, similar to those in our frame-
work, are also critical questions for future research.

Landscape planning almost always involves decisions
about the spatial arrangement of conflicting land uses that
influence the level of landscape fragmentation (e.g., [71]).
Urban and rural landscape planning could benefit substan-
tially from a more nuanced understanding of the relation-
ships between landscape fragmentation and heterogeneity
and ecosystem service provision. Yet implications for other
globally relevant policy challenges are equally important.
Understanding when and why fragmentation inhibits or
enhances ecosystem service provision is central to the land-
sparing versus land-sharing (or wildlife-friendly farming)
debate [23,72]. This is also true for designing rules to
improve the effectiveness of and co-benefits from trades
in carbon markets [e.g., Reducing Emissions from Defor-
estation and Forest Degradation (REDD)+] [73], biodiver-
sity (e.g., offsetting, agri-environment schemes) [5,74], and
other ecosystem services (e.g., water quality). Market-
based approaches to stimulate desirable land-use out-
comes are also increasingly incorporating effects of spatial
configuration [75] but currently incorporate only a simple
understanding of the consequences of fragmentation.
196
Thus, understanding the effects of fragmentation on eco-
system services is of critical importance for the develop-
ment of effective policy mechanisms.

Concluding remarks
Our conceptual framework highlights the vital importance of
understanding how fragmentation of natural land cover
affects service supply and flow and the different ecological
and social components of ecosystem service provision. Incor-
porating these effects into ecosystem service assessments is
critical to the development of effective tools that can help
structure landscapes to provide multiple ecosystem services.
In many ways, the field of ecosystem services is ideally placed
to address this challenge; many studies already work at
large spatial scales across landscapes with different levels
of fragmentation and incorporate data from a diversity of
sources, including ecological, remote sensing, and social
survey data. What is needed now is increased empirical
research into the exact nature of the relationships between
fragmentation and ecosystem service supply and flow. As the
ecosystem services concept is increasingly incorporated into
decision-making and planning activities, the need to
improve understanding of ecosystem service provision at
the landscape scale is fundamentally important.
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