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Abstract: The monitoring of invasive grasses and vegetation in remote areas is challenging, costly, and
on the ground sometimes dangerous. Satellite and manned aircraft surveys can assist but their use
may be limited due to the ground sampling resolution or cloud cover. Straightforward and accurate
surveillance methods are needed to quantify rates of grass invasion, offer appropriate vegetation
tracking reports, and apply optimal control methods. This paper presents a pipeline process to detect
and generate a pixel-wise segmentation of invasive grasses, using buffel grass (Cenchrus ciliaris) and
spinifex (Triodia sp.) as examples. The process integrates unmanned aerial vehicles (UAVs) also
commonly known as drones, high-resolution red, green, blue colour model (RGB) cameras, and a
data processing approach based on machine learning algorithms. The methods are illustrated with
data acquired in Cape Range National Park, Western Australia (WA), Australia, orthorectified in
Agisoft Photoscan Pro, and processed in Python programming language, scikit-learn, and eXtreme
Gradient Boosting (XGBoost) libraries. In total, 342,626 samples were extracted from the obtained
data set and labelled into six classes. Segmentation results provided an individual detection rate of
97% for buffel grass and 96% for spinifex, with a global multiclass pixel-wise detection rate of 97%.
Obtained results were robust against illumination changes, object rotation, occlusion, background
cluttering, and floral density variation.

Keywords: biosecurity; buffel grass; Cenchrus ciliaris; drones; remote surveillance; spinifex; Triodia
sp.; unmanned aerial vehicles (UAV); vegetation assessments; xgboost

1. Introduction

Over recent decades, invasive grasses have resulted in very substantial losses to native ecosystems
around the world. Governmental, scientific, and community efforts to monitor and control these and
other introduced plant species have been extremely challenging due to restricted and difficult access to
remote areas, expensive operational costs, and, in some cases, hazardous data collection campaigns [1].
In Australia, the U.S., South Africa, and other parts of the world, introduced grasses have flourished in
arid landscapes due to their tenacity under hot, heavy grazing, and drought conditions [2,3]. Moreover,
they have been fostered by farmers because of the economic benefits that they bring through land
rehabilitation and livestock production. However, many of these plant species have invaded some of
the wetter and more fertile parts of the landscape and affected the survival of native plant and animal
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populations [4–6]. As a result, these species have now been catalogued as invasive plants or weeds.
There is an increasing body of research focused on assessing the biodiversity effects of invasive grasses,
which shows that their expansion rates are likely to exceed new high records due to climate change
effects [6–11]. Straightforward, efficient, and accurate surveillance methods are required to quantify
expansion rates of invasive grasses and apply reliable and efficient control methods.

Among the present efforts to monitor invasive grasses and other vegetation, different
investigations have developed diverse solutions, using various image sensors and detection methods
to meet a range of needs. Previously, satellite and manned aircraft imagery was used to map invasive
grass infestations. Nonetheless, advances in unmanned aerial vehicles (UAV) design and path planning
[12,13] have seen an increased application of remote sensing for ecological assessments and biosecurity
applications [14–17]. Research from Olsson et al. [18], for instance, demonstrated the importance
of using hyperspectral imagery for invasive grass detection as compared with satellite imagery.
A feasibility study of sensing technology by Marshall et al. [19], for example, illustrates the potential
for regional mapping of buffel grass infestations in arid landscapes using high-resolution aerial
photography in red, green, blue (RGB) colour model at a cm/pixel scale over multi- and hyperspectral
technologies for overall detection rates.

Weed mapping using different image sensors capable of sensing multiple spectral bands is
also an active field of research. Alexandridis et al. [20], for instance, developed an approach by
integrating UAVs and multispectral imagery for weed mapping, achieving detection rates of up to 96%.
Moreover, Blaschke et al. [21] and Torres-Sánchez et al. [22] showed the use of Geographic Object-Based
Image Analysis (GEOBIA) through UAVs and multispectral imagery to obtain detection rates of
approximately 90%.

Development of image and data processing techniques for vegetation assessments is also
increasing. Amongst the popular methods, the use of spectral indexes for weed detection has gained
considerable popularity, as explored by Ashourloo et al. [23], Robinson et al. [24], and Lin et al. [25].
In these cases, both supervised and unsupervised segmentation algorithms were greatly influenced
by image quality, spectral bands, and ground sampling distance (GSD), among other complex
considerations of the scene. In sum, a universal criterion has not yet been defined for choosing
a feasible sensing technology and data processing pipeline that meets every application need [26].
This paper proposes the creation of a global approach for the surveillance of invasive grasses and
related biosecurity applications by developing an automatic surveillance solution integrating UAV
technology with high-resolution RGB cameras and a machine learning-based classification algorithm
to process and segment the data. The presented pipeline process is illustrated with the automatic
detection of buffel grass (Cenchrus ciliaris) and spinifex (Triodia sp.) in arid and semi-arid ecosystems in
Australia.

2. Materials and Methods

2.1. Process Pipeline

We developed a pipeline process consisting of four main components: Acquisition, Preprocessing,
Training, and Prediction, as illustrated in Figure 1. High-resolution digital images are initially captured
from a UAV flight mission. Images are downloaded, orthorectified, and preprocessed in order to extract
samples with key features and label them subsequently. Data are then fed into a supervised machine
learning classifier to train and optimise its detection capabilities. Finally, the entire orthorectified
imagery is processed to predict the location of invasive grasses and vegetation in the studied area.
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Figure 1. Primary pipeline for mapping of invasive grasses and related vegetation.

2.2. Site

The study site is located in the Cape Range National Park, Western Australia (WA), Australia
(−22.190429, 113.865478). The site contains buffel grass, spinifex, remains of dry and decomposed
vegetation, bushes, and arid soil. Images were taken in a successive series of four flight campaigns,
conducted on the 10 July 2016, from 12:20 p.m. until 2:20 p.m. Meteorological conditions for that
day were sunny, with south-easterly winds from 17 to 26 km/h, 46% relative humidity, 21.2 ◦C mean
temperature, and no precipitation [27].

In the site, invasive grass species such as buffel grass and spinifex were found with negligible size
variation, viewpoint variation, background clutter, and occlusion. However, they occurred at various
densities, as shown in Figure 2.

Figure 2. Main features of the study site. (a) Geographical location. (b) Area with high density of buffel
grass. (c) Area with high density of spinifex. (d) Area with low density of invasive grasses. (e) Buffel
grass. (f) Spinifex.
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2.3. Image Sensors

A Canon EOS 5DsR digital camera (Canon Inc., Tokyo, Japan) was utilised to capture
high-resolution images. The camera specifications include 50.6 MP resolution, 28 mm focal
length, ISO-400 speed, a full-frame complementary metal–oxide–semiconductor (CMOS) sensor of
36 mm × 24 mm, a 625 µs exposure time, and a global positioning system (GPS) sensor.

2.4. The UAV and Sample Acquisition

A DJI S800 EVO Hexa-rotor UAV (DJI, Guangdong, China) was employed in the study
area following a designed mission route with DJI Ground Station 4.0 software. As shown in
Figure 3, the UAV featured high-performance brushless motors, a customised dampened gimbal
providing active three-axis stabilisation of the sensor payload (levelled out to ensure the sensor was
pointing permanently in the direction of the ground), a total weight of 3.9 kg, and dimensions of
1180 mm × 1000 mm × 500 mm. The flight mission was performed at an altitude of 66.9 ± 4.6 m, an
overlap of 80%, side lap of 50%, and a route length of 6.6 km at 16.2 km/h. The horizontal and vertical
GSD were approximately 1.0152 cm/pixel in both cases.

Figure 3. The DJI S800 EVO (DJI, Guangdong, China) unmanned aerial vehicle (UAV) flying in Cape
Range National Park, Western Australia (WA), Australia.

2.5. Software

Various software solutions were used through the development of this research. In order to
prepare the data, more than 500 raw images were filtered and orthorectified using Agisoft PhotoScan 1.2.
With this software, an orthomosaic image of 44, 800 × 17, 200 pixels of 2.4 GB was generated. Due to
the huge image size and possible random-access memory (RAM) limitations, this image was split into
4816 items of 400 × 400 pixels in Tagged Image File (TIF) and Keyhole Markup Language (KML)
formats. A group of representative samples in cropped regions was extracted and subsequently
labelled using GNU Image Manipulation Program (GIMP) 2.8.22 to fit the classifier. The generated
image set was processed using Python 2.7.14 programming language and several third-party libraries
for data manipulation and machine learning, including eXtreme Gradient Boosting (XGBoost) 0.6 [28],
Scikit-learn 0.19.1 [29], OpenCV 3.3.0 [30], and Matplotlib 2.1.0 [31].
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2.6. Data Labelling

Due to the variety of conditions in which invasive grasses were found in Cape Range National
Park, 10 images were selected and analysed using photo interpretation. Invasive grasses (buffel grass
and spinifex), as well as common objects in the area, were highlighted using bright distinguishable
colours as depicted in Figure 4. Regions were coloured through the “Bucket fill” tool of the
GIMP software.

To perform image labelling, a mask for each image sample was generated by assigning integer
values for every highlighted pixel. Each bright coloured pixel was filtered from every sample
using Equation (1).

H(x,y) =

{
a if S(x,y) = F(R,G,B)
0 otherwise

(1)

where H is the mask for each sample S and a is the integer value for every bright colour value
F(R,G,B). Values for a were set as follows: 1 = buffel grass; 2 = soil and road; 3 = bushes; 4 = shadow;
5 = dry vegetation (Dry Veg.); 6 = spinifex.

(a) (b)

Figure 4. Image labelling. (a) Representative sample. (b) Highlighted regions using bright colours.

2.7. Classification Algorithm

Algorithm 1 was utilised for the training and prediction stages. It identifies and filters the
highlighted regions mentioned in Section 2.6, trains a gradient boosted decision tree classifier,
cross-validates the classification rates, predicts unlabelled data, and displays the results.

The training section of Algorithm 1 comprises several steps to load, preprocess the data, and fit an
XGBoost classifier. The processing stage transforms the read data into an array of features or attributes,
which are consequently processed by the classifier. As described in the algorithm, in order to obtain the
feature array D, representative sample images G are firstly converted from their default RGB colour
model into the hue, saturation, value (HSV) colour model in Step 3. Then, a set of filters are applied
on G and their outputs inserted into D subsequently, as mentioned in Step 5. The two-dimensional
(2D) filters calculate the variance into a subset of pixel neighbours contained in a window, following
Equations (2) and (3).
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Algorithm 1 Detection and segmentation of invasive grasses using high-resolution RGB images.

Required: orthorectified image set I. Representative samples set G. Sample masks set H
Training

1: for i← 1, n do . n = total images in G (labelled data)
2: Load Gi and Hi images
3: Convert colour space of Gi into HSV
4: Insert each colour channel into a feature array D
5: Use 2D filters on Gi and insert their outputs into D
6: From Gi and Hi, filter only the pixels with assigned labelling on D
7: end for
8: Split D into training data DT and testing data DE
9: Create a XGBoost classifier X and fit it using DT

10: Use K-fold cross validation with DE . number of folds = 10
11: Perform grid search to tune X parameters

Prediction
12: for i← 1, m do . m = total images in I
13: Load Ii image
14: Convert colour space of Ii into HSV
15: Scan every pixel and predict the object using X
16: Oi ← Convert the data into a 2D image
17: Export Oi into TIF format
18: end for
19: return Oi

X =
1

w2


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 (2)

s2 = E[X2]− E[X]2 (3)

where X is the kernel of the filter to estimate the mean value of the processed image, w is the window
size, and s2 is the variance defined as the subtraction between the estimation of mean of square and
the square of mean. Thus, the array of features D for this case study contains 10 items as follows: hue,
saturation, value, variance filters on hue where w equals 3 and 15, variance filters on saturation where
w equals 3 and 15, and variance filters of the grayscale image from Gi where w equals 3, 7, and 15.
Later, as described in Step 6, pixel locations that were previously labelled are filtered using masks H,
following Equation (4).

Dj =

{
[Gi(x, y), Hi(x, y)] if Hi(x, y) 6= 0

null otherwise
(4)

where Dj is the 2D output array of the operation, Gi(x, y) is the sample image, and Hi(x, y) is the
labelled counterpart of Gi at position (x, y). In total, 342, 626 pixel-wise samples were filtered and
subsequently split randomly into a training (75%) and testing (25%) data array. In Step 9, data are
processed into the XGBoost classifier, which is a state-of-art decision tree and gradient boosting
based model created by Chen and Guestrin [28] that is optimised for large tree structures, high
execution speed, and excellent performance. Hyper-parameters for this classifier such as the number
of estimators, the learning rate, and maximum depth are estimated by running a grid search method in
Step 11. This technique evaluates a combination of multiple values for each hyper-parameter, returning
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the optimal combination of those for the classifier. For this case study, the optimal hyper-parameter
values to obtain an accuracy-robustness balance without causing over-fitting are:

estimators = 100, learning rate = 0.1, maximum depth = 3

where “estimators” is the number of trees, “learning rate” is the step size of each boosting step, and
“maximum depth” is the maximum depth per tree that defines the complexity of the model. For the
prediction stage (Steps 13–17), all the orthorectified images are processed in a loop using the trained
classifier and the same data conversion considerations applied at the training stage. Finally, classified
pixels for each image are painted in distinguishable colours and exported in TIF format, compatible
with geographic information system (GIS) platforms.

3. Results

Segmented images for photo interpretation as well as accuracy indicators were implemented for
validation purposes. In total, 85, 657 labelled pixels were evaluated from the test data set DE to assess
Algorithm 1. The confusion matrix of the classifier is presented in Table 1.

Table 1. The eXtreme Gradient Boosting (XGBoost) classifier confusion matrix.

Predicted Buffel Soil Bushes Shadow Dry vegetation Spinifex

La
be

ll
ed

Buffel 25,256 17 156 0 4 362
Soil 15 25,196 1 0 1 0
Bushes 632 1 3913 2 21 81
Shadow 0 1 0 7729 0 0
Dry vegetation 8 10 6 2 5734 159
Spinifex 508 2 20 0 171 15,649

From 25, 795 instances of pixels labelled as buffel grass, the algorithm predicted correctly 25, 256
pixels and reported misclassifications of 362 pixels as spinifex, 156 pixels as bushes, 17 pixels as soil
and 4 pixels as dry vegetation. Similarly, 25, 196 pixels were successfully predicted as soil, with 17
misclassifications; 3913 pixels as bushes with 737 misclassifications; 7729 pixels as shadow with 1
misclassification; 5734 pixels as dry vegetation with 185 misclassifications; and 15, 649 pixels as spinifex
with 701 misclassifications. Based on these numbers, a classification report is generated as shown in
Table 2.

Table 2. Classification report from confusion matrix of Table 1.

Class Precision (%) Recall (%) F-Score (%) Support

Buffel 95.60 97.91 96.75 25,795
Soil 99.88 99.93 99.90 25,213
Bushes 95.53 84.15 89.84 4650
Shadow 99.95 99.99 99.97 7730
Dry vegetation 96.68 96.87 96.78 5919
Spinifex 96.30 95.71 96.00 16,350

Mean 97.32 95.76 96.54 ∑= 85,657

Here, precision is the ratio between true positives and the sum of true positives and false positives,
recall is the ratio between true positives and the sum of true positives and false negatives, f-score is
the mean value between precision and recall, and support is the number of tested pixels per class.
For this case study, precision errors indicate the output of misleading results by labelling wrong classes,
whereas recall errors show the output of incomplete class detection.

Overall, the majority of the classes were successfully classified. For buffel grass and spinifex,
most of the misclassified pixels were attributed to their counterpart class; these misclassification rates
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were small, representing for buffel grass precision and recall errors of 1.92% and 1.40%, respectively,
and for spinifex values of 2.23% and 3.11%, respectively. Due to the high variation in greenness
values of labelled buffel grass, specific areas of dry grass were classified as spinifex and vice versa.
Similarly, misclassification of dry vegetation and spinifex instances (2.88% and 2.69%, 0.98% and
1.05%) occurred owing to many occurrences of this plant in senescence conditions. The classification
rates were excellent for the shadow and soil classes, mainly due to the small variation in their visual
properties such as their colour intensity, luminosity, and smooth texture. In contrast, the classification
of the bushes class was not satisfactory at all, especially its recall rates, as indicated by a greater
proportion of pixels classified as buffel grass (3.81% and 13.59%) and to a lesser degree, spinifex (0.49%
and 1.74%).

The proposed algorithm is capable of classifying invasive grasses and other vegetation with
remarkable global precision rates of 97% and recall rates of 95.76%. The proposed method increases,
nevertheless, the likelihood of classifying certain bush regions as buffel grass, with a recall rate of
84.15%. Considering an equal relevance of precision and recall for this investigation, the overall
detection rate of the proposed method is 96.54%. The 10-fold cross-validation analysis achieved
mean accuracy and standard deviation values of 97.54% and 0.042%, respectively. Furthermore,
a feature’s relevance analysis was conducted for the XGBoost classifier. The embedded estimation
function performs the sum of the instances each feature is split in its decision-tree-based structure.
The importance of each feature is depicted in Figure 5.

Figure 5. Relevance of each feature for the tuned classifier.

Where each bar item from the x-axis represents the relative frequency each feature has in the
classifier. Here, hue, value, and saturation scores demonstrate the significant relevance the features
had on the model, representing up to 65% of the total instances. These ratings are followed by 2D
variance filter images such as the grayscale image with window size of 7 pixels, and the saturation
image with a 15-pixel window size. The filters with substantially large window sizes showed clearly
the importance of classifying accurately certain objects whose pixels are presented in a set of textures,
such as bushes and spinifex. An illustration of the prediction and segmentation outputs is depicted
in Figure 6.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Pixel-wise segmentation from acquired red, green, blue (RGB) colour model images using
Algorithm 1. (a, c, e, g) Orthorectified RGB images. (b, d, f, h) Final segmentation with predicted classes.

Figure 6a,c,e,g depict representative samples where buffel grass, spinifex, bushes, soil, and dry
vegetation are displayed at different densities and light conditions, whereas Figure 6b,d,f,h show the
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segmentation obtained from the proposed algorithm. As seen in the confusion matrix from Table 1, it is
possible to obtain highly accurate segmentation results for the buffel grass, spinifex, soil and shadow
classes. However, the segmentation results for the “bushes” class is unstable in some images and can
be regarded in many cases as image noise. The segmented images can be loaded and displayed in any
GIS software, as shown in Figure 7.

Figure 7. Prediction of invasive grasses in Cape Range National Park and its display in Google Earth.

4. Discussion

Accuracy and segmentation indicators presented in Section 3 validate the proposed pipeline
approach to map vegetation and invasive grasses in arid lands. Negligible proportions of observed
misclassifications for “buffel” and “spinifex” classes may be attributed to human error during the
labelling of sample data. That is strongly evidenced by evaluating the results for the “bushes”
class where the number of misclassified pixels is attributed to a challenging image labelling task.
These inaccuracies occurred because the visible colour properties of bushes from the RGB sensor
showed many similarities with other vegetation. From environmental monitoring and biosecurity
perspectives, the proposed method is capable of providing critical information such as the distribution
of invasive grasses, density values of invasive species in arid lands, and estimation of their expansion
values for the short and mid-term, among others.

The present study represents a competitive approach for the use of UAVs and machine
learning-based classification models compared with alternative solutions. It complements the research
outcomes on buffel grass of Marshall et al. [19] by confirming a feasible, accurate, lightweight and
relatively cheap solution for invasive grass mapping. With regard to invasive grasses in arid lands,
this paper has demonstrated that using only high-resolution RGB images and single pixel-wise
classification satisfies the need for accurate and efficient detection and segmentation solutions.

It is noteworthy that the invasive grasses in this study had negligible size variation, background
clutter, occlusion, and viewpoint variation, constituting, apparently, an advantage. As opposed to
senescence conditions, varied levels of grass density and illumination variation did not represent
additional challenges. However, acquired data is insufficient for performing further classification tests
with changes in illumination in the study area, such as acquisition tasks at different times during the
day and under cloudy conditions. These parameters might alter the detection rates of the presented
approach, and further research should be conducted under these conditions. The processing of imagery
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with small GSD values demonstrates how UAV-based remote sensing equipment has improved sensing
capabilities compared with satellite and manned aircraft for invasive grass assessments.

Future research should analyse the efficacy of supervised and unsupervised algorithms to label
vegetation and specifically invasive grass species accurately, and integrate the best approaches in the
proposed pipeline. Additionally, new efforts should be focused on improving the performance of
the entire pipeline process as well as the aggregation and evaluation of unsupervised classification
algorithms for image labelling tasks using RGB pictures only. Although the amount of previous
research in optimising machine learning models is significant, specific areas might be improved for
real-time applications, such as orthomosaic-based processes and a better software integration into a
single solution.

5. Conclusions

This paper proposed an integrated pipeline methodology for mapping vegetation and invasive
grasses in arid lands. The methods were demonstrated by mapping buffel grass and spinifex in
remote areas of WA through the use of UAVs, high-resolution RGB imagery, and gradient boosted
decision trees. The presented approach illustrates detection rates of 96.75% and 96.00% for single
mapping of buffel grass and spinifex, respectively, and a multiclass detection rate of 96.54%. Invasive
grasses were accurately detected at different spatial concentrations with a GSD of up to 1.015 cm/pixel,
demonstrating how UAV data collection can be useful for invasive grass detection at early stages. This
case study demonstrates the implementation of unmanned aerial systems and machine learning for a
feasible, accurate, and lightweight assessment of invasive grasses in arid and semi-arid lands. Future
work will focus on integrating unsupervised and supervised methods for vegetation data labelling in
order to reduce processing times.

Acknowledgments: This work was funded by the Plant Biosecurity Cooperative Research Centre (PBCRC) 2164
project, the Agriculture Victoria Research and the Queensland University of Technology (QUT). The authors
would like to acknowledge Derek Sandow and WA Parks and Wildlife Service for the logistic support and permits
to access the survey areas at Cape Range National Park. The authors would also like to acknowledge Eduard
Puig-Garcia for his contributions in co-planning the experimentation phase. The authors gratefully acknowledge
the support of the QUT Research Engineering Facility (REF) Operations Team (Dirk Lessner, Dean Gilligan, Gavin
Broadbent and Dmitry Bratanov), who operated the DJI S800 EVO UAV and image sensors, and performed
ground referencing. We thank Gavin Broadbent for the design, manufacturing, and tuning of a two-axis gimbal
for the camera. We also acknowledge the High-Performance Computing and Research Support Group at QUT, for
the computational resources and services used in this work.

Author Contributions: Felipe Gonzalez and Kerrie Mengersen contributed to experimentation and data collection
planning. Felipe Gonzalez supervised the ground and airborne surveys, quality of acquired data, and logistics.
Juan Sandino designed the proposed pipeline and conducted the data processing phase. Felipe Gonzalez,
Kerrie Mengersen, and Kevin J. Gaston provided definitions, assistance and essential advice. Juan Sandino
analysed the generated outputs, and validated and optimised the algorithm. All the authors contributed
significantly to the composition and revision of the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:



Sensors 2018, 18, 605 12 of 13

2D Two-dimensional
CMOS Complementary metal–oxide–semiconductor
Dry Veg. Dry vegetation
GEOBIA Geographic Object-Based Image Analysis
GIMP GNU Image Manipulation Program
GIS Geographic information system
GPS Global positioning system
GSD Ground sampling distance
HSV Hue, saturation, value colour model
KML Keyhole Markup Language
MDPI Multidisciplinary Digital Publishing Institute
RAM Random-access memory
RGB Red, green, blue colour model
TIF Tagged Image File
UAV Unmanned Aerial Vehicles
WA Western Australia
XGBoost eXtreme Gradient Boosting
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