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Abstract
Aim: Species distribution models (SDMs) have played a pivotal role in predicting how 
species might respond to climate change. To generate reliable and realistic predic‐
tions from these models requires the use of climate variables that adequately capture 
physiological responses of species to climate and therefore provide a proximal link 
between climate and their distributions. Here, we examine whether the climate vari‐
ables used in plant SDMs are different from those known to influence directly plant 
physiology.
Location: Global.
Methods: We carry out an extensive, systematic review of the climate variables used 
to model the distributions of plant species and provide comparison to the climate 
variables identified as important in the plant physiology literature. We calculate the 
top 10 SDM and physiology variables at 2.5° spatial resolution for the globe and use 
principal component analyses and multiple regression to assess similarity between 
the climatic variation described by both variable sets.
Results: We find that the most commonly used SDM variables do not reflect the 
most important physiological variables and differ in two main ways: (a) SDM variables 
rely on seasonal or annual rainfall as simple proxies of water available to plants and 
neglect more direct measures such as soil water content; and (b) SDM variables are 
typically averaged across seasons or years and overlook the importance of climatic 
events within the critical growth period of plants. We identify notable differences in 
their spatial gradients globally and show where distal variables may be less reliable 
proxies for the variables to which species are known to respond.
Main conclusions: There is a growing need for the development of accessible, fine‐
resolution global climate surfaces of physiological variables. This would provide a 
means to improve the reliability of future range predictions from SDMs and support 
efforts to conserve biodiversity in a changing climate.
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1  | INTRODUC TION

Over the last 20 years, species distribution models (SDMs) have 
become one of the most widely used methods for predicting how 
species will respond to global environmental change. A search in 
Web of Science (May 2018) for articles containing both “species 
distribution models” and “climate change”, for example, gave over 
7,800 returns. Studies that use SDMs, or develop tools for doing 
so are amongst the most highly cited in ecology and conserva‐
tion (e.g., Elith et al., 2006 [3,524 citations]; Guisan & Zimmerman, 
2000 [3,479]; Phillips, Anderson, & Schapire, 2006 [4,953]; Thomas 
et al., 2004 [3,271]—Web of Science Core Collection, May 2018). 
Moreover, results from SDMs have shaped 21st century conserva‐
tion policy, highlighting that regions with favourable climates will 
soon lie beyond the natural limits of colonization of many current 
species distributions, and hence, that the redesign of protected 
area networks or species translocations may be needed (Guisan & 
Thuiller, 2005).

In the context of climate change, a premise of SDMs is that 
climate determines the natural distribution of species (Pearson & 
Dawson, 2003). On this basis, SDMs determine the statistical re‐
lationship between current species' presence/absence data and a 
set of climatic variables and use this to predict the areas that a 
species may be able to occupy in the future (Elith & Leathwick, 
2009). The climate variables selected to model species distribu‐
tions are therefore assumed to impose constraints on species such 
that at locations or times when climatic conditions are unsuitable, 
populations of a species are unable to survive in the wild (Pearson 
& Dawson, 2003).

The climatic variables used in SDMs can be identified in two 
main ways. Most commonly, a correlative approach is taken, 
whereby statistical associations between species' presence or ab‐
sence data and a set of climate variables are initially tested and 
the strongest predictors included in the SDM (Elith & Leathwick, 
2009). In contrast to these “correlative” SDMs, “mechanistic” or 
“physiological” models use variables for which experimental work 
has established direct links to biological processes of the study 
species.

The appropriate selection of climate variables is fundamental 
to the reliability of SDMs (Austin & Van Neil, 2011). If the variables 
selected cannot adequately represent climatic factors that influ‐
ence a species' distribution, then subsequent range predictions in 
new locations or future climate scenarios may be incorrect. The 
degree to which climate variables are proximal is therefore an 
important consideration when constructing SDMs (Austin, 2002; 
Petitpierre, Broennimann, Kueffer, Daehler, & Guisan, 2017). 
Proximal variables directly capture physiological mechanisms or 
processes of the study species and, as such, are causally linked to 
a species' distributional response to climate both in space and in 
time (Austin, 2002, 2007).

Indirect links to species' physiology can be captured by “distal” 
variables which may provide a good “mean field approximation” 
for these proximal predictors (Bennie, Wilson, Maclean, & Suggitt, 

2014). However, other factors in a species' environment, both cli‐
matic and non‐climatic, may contribute strongly to observed re‐
lationships between distal variables and species distributions in 
correlative models. The influence of these additional factors may be 
unique to the time and place in which correlations between a distal 
variable and species distributions are determined so that in new lo‐
cations or future climates the ability of a distal variable to predict 
species distributions may weaken or be lost (Jackson, Betancourt, 
Booth, & Gray, 2009). Proximal variables are thus likely to provide 
more robust estimates of distribution, particularly when applied to 
studies of species responses to climate change, and are often con‐
sidered superior to distal alternatives when using SDMs for this pur‐
pose (Austin, 2002).

Despite recommendations to use proximal variables in SDMs 
(e.g., Helmuth, Kingsolver, & Carrington, 2005; Barbet‐Massin & 
Jetz, 2014), those selected are known often to neglect physiologi‐
cal processes (Mod, Scherrer, Luoto, & Guisan, 2016). By definition, 
mechanistic SDMs will use proximal variables but correlative SDMs, 
which remain the most popular approach to modelling species distri‐
butions (Barry & Elith, 2006), may use any climate variable deemed 
to correlate sufficiently to species distributions such that it can pre‐
dict presence or absence. For plants, it is not yet known how closely 
the climate variables used most commonly in SDMs compare to 
those of known physiological importance.

In this study, we quantify the use of climate variables in SDM 
studies of vascular and non‐vascular plants and provide comparison 
to those identified as physiologically important in the plant physiol‐
ogy literature. We test two hypotheses:

(i)	 Climate variables used in plant SDMs are different from those 
known directly to influence plant physiology

(ii)	The spatial patterns of climate variation described by the most 
common SDM variables do not match those described by physio‐
logically relevant variables

If both the SDM variables themselves and the spatial patterns of cli‐
mate they describe are different to physiologically relevant variables, 
we may conclude that the SDM variables are distal predictors of spe‐
cies distributions and caution should be applied when using these vari‐
ables, particularly in studies of plant responses to climate change.

We focus only on plant species to provide a more complete 
and comparable analysis and because climate is widely accepted as 
the most dominant influence on plant distributions (cf. Box, 1981; 
Woodward, 1987). Further, as primary producers, plant distribu‐
tions will influence resource availability at higher trophic levels, 
which in turn has important implications for the conservation of 
species further up the food chain (Hadded et al., 2009). As SDMs 
are used routinely to assess species distributions in the context 
of climate change (Austin & Van Niel, 2011), we analyse climate 
variables associated directly with a changing climate (Collins et al., 
2013) and which are known to influence plant distributions (Austin 
& Van Neil, 2011), namely temperature and water availability 
(Körner et al., 2016).
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While we acknowledge that factors such as dispersal and biotic 
interactions can also exert strong influence on species distributions 
(Gallien et al., 2015; Shea & Chesson, 2002), consideration for these 
is beyond the scope of this study. We hope to aid the effective pa‐
rameterisation of the climatic component of SDMs, especially to 
meet demands to predict accurately species responses to climate 
change.

2  | METHODS

2.1 | Data sources

We compiled data from the peer‐reviewed literature on species dis‐
tributions and physiology. We performed two literature searches:

1.	 To source studies from the SDM literature, we used the search 
terms TS  =  (bioclimatic AND climate variables) AND TS  =  (spe‐
cies distribution OR niche) in ISI Web of Science (http://www.
webof​knowl​edge.com). This returned 343 papers (December 
2017) which were sorted by relevance and individually assessed 
and selected for further scrutiny if the study: (a) examined the 
distribution of at least one plant species using climatic variables 
and SDM techniques; (b) was not a literature review or general 
discussion paper; and (c) did not as a primary aim compare 
how different variable types affect modelling results. Methods 
of the 150 qualifying studies were inspected to determine 
the climate variables used in each case. Studies examining 
the distributions of both plant and non‐plant species were 
retained, as there were no instances in which plant species 
were modelled using different environmental variables to other 
species. We documented the full set of climate variables used 
in the final models and not just those found to affect species 
distributions. Herein, we refer to any variables sourced from 
the SDM literature as the “SDM” or “bioclimatic” variables.

2.	 To source studies from the physiological literature, we performed 
a systematic search in ISI Web of Science (http://www.webof​
knowl​edge.com) using the following search criteria: “experiment 
AND plant AND physiological AND response AND climate.” This 
returned 245 papers (January 2019) which we sorted by rele‐
vance. We included the first 150 studies identified in this way to 
match the sample size of the species distribution studies. Further 
details of the physiology literature are provided in Appendix S2. 
Each study was inspected, and all climate variables found signifi‐
cantly or insignificantly to affect plant physiology (e.g., growth, 
reproduction, survival) were recorded. In cases where experi‐
mental treatments were delivered over unspecified phenological 
stages, but occurred when the otherwise unmanipulated environ‐
mental variables were conducive to plant growth, we defined the 
temporal scale of the final variable as “during the growing season.” 
We grouped soil water content into a single variable (for each 
unique time period of measurement), regardless of the way this 
was determined in the study (e.g., gravimetrically, volumetrically) 
as individually the variables would be very highly correlated and 

would not provide meaningful additions to the physiology list if 
separated. There were no other cases where the grouping of vari‐
ables was necessary. Herein, we refer to any variables identified 
from the physiology search as the “physiology” or “physiological” 
variables. Full details of the physiology variables can be found in 
the Appendix S1. A variable could be classed as both an “SDM” 
and a “physiology” variable if it was used to model the distribution 
of a plant in one of the SDM studies and also found to be physi‐
ologically relevant in a study from the plant physiology literature.

2.2 | Analysis

To identify the 10 most frequently used variables from each of the 
two searches, we summed the number of times each unique climate 
variable was used in their respective literature and sorted the results 
from highest to lowest. Final rankings of the physiology variables 
were calculated by dividing these frequencies (significant) by the 
number of times each variable was used (significant + insignificant) 
in the 150 papers reviewed. This accounts for ease of manipulation 
of these variables within an experimental setting, but a further limi‐
tation is that our literature search was non‐exhaustive and variable 
rankings may therefore be sensitive to studies selected. We there‐
fore performed a post hoc sampling with replacement procedure to 
test for the robustness of variable ranks. We generated 999 new 
samples and tested for concordance between the ranking order of 
the top 10 variables in each of the new samples and our original top 
10 physiology variables using Kendal's W test (Tate & Clelland, 1957).

Studies modelling distributions of a greater number of species 
may use more general climate variables, so we investigated whether 
use of the top 10 SDM variables was influenced by species number, 
using a generalized linear model (GLM). As variable use was repre‐
sented as either 0 (false) or 1 (true), a binomial error distribution and 
logit link function were used. Species number was logarithmically 
transformed to reduce heteroscedasticity. Eight studies were ex‐
cluded from this analysis as the species number was not stated.

To produce global maps of climate variation for the top 10 SDM 
and physiology variables, we downloaded six‐hourly data from the 
National Oceanic and Atmospheric Administration (NOAA) NCEP/
NCAR Reanalysis (Kalnay et al., 1996) and daily data from the CPC 
Unified Precipitation Project gridded global climate databases (https​
://www.esrl.noaa.gov/psd/). These data were resampled and pro‐
cessed to construct and map (averaged over the period 2000–2017) 
each of the top 10 SDM and physiology variables at 2.5° resolution 
(see Appendix S2 for further details on data download and processing 
and Appendix S3: Figures S3 and S4, for global maps of each variable).

We sought next to provide statistical comparison between the 
climatic conditions described by the SDM and physiology variables. 
However, climate variables are often correlated with one another, 
and in consequence, even if the variables are different, the spa‐
tial patterns of those most frequently used in SDMs may capture 
in aggregate the spatial patterns of the physiological variables. We 
followed a two‐step process in order to compare the SDM and 

http://www.webofknowledge.com
http://www.webofknowledge.com
http://www.webofknowledge.com
http://www.webofknowledge.com
https://www.esrl.noaa.gov/psd/
https://www.esrl.noaa.gov/psd/
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physiology variables: (a) principal component analysis (PCA) on both 
variable sets; and (b) multiple regression analysis of SDM principal 
component scores using scores from physiology principal compo‐
nents (PCs) 1–3 as predictors.

Principal component analysis can be used to reduce dimension‐
ality in a dataset and indicate which variables contain the most in‐
formation (King & Jackson, 1999). Here it allows us to determine 
which aspects of climate variation are described by the SDM and 
physiology variables. We performed two PCAs to identify which 
climate variables contributed most to the overall variation in con‐
ditions described by the top 10 SDM and physiology variables. 
Total annual precipitation and mean annual temperature were not 
included in the analyses as they featured in both top 10 lists and so 
it was not necessary to examine the spatial differences between the 
SDM and physiology studies for these variables. Data were scaled 
to account for differences in units among each variable set, and a 
scree plot was used to determine how many PCs to retain from each 
PCA (Appendix S3: Figure S2). For both the SDM and physiology 
variables, we retained the first three PCs. We analysed the variable 
loadings for PCs 1–3 for both variable sets to determine the aspects 
of climate they described.

It is not possible to compare PCs in a like‐for‐like way between 
variable sets. PC1 for the SDM variables, for example, may correlate 
poorly with PC1, but well with PC2 of the physiology variables so 
that collectively the PCs from the two sets of variables may describe 
similar trends in global climate variation. To assess similarity be‐
tween the climate variation described by the physiology and SDM 
variables, we therefore performed three multiple regression analy‐
ses on scores of each of the SDM PCs using the scores for the phys‐
iology PCs 1–3 as predictors (Appendix S3: Figure S5). To determine 
the variance unexplained collectively by the multiple regressions, 
we calculated the squared residuals for each regression and mapped 
the square root of the minimum of these residuals, thereby revealing 
where discrepancies in the spatial patterns of climate captured by 
the two sets of variables were greatest (Figure 3).

All data analyses were conducted using the statistical pro‐
gramme R (R Core Team, 2018).

3  | RESULTS

3.1 | Climate variables

Two hundred and eighty‐nine unique climate variables were identi‐
fied from the 150 SDM studies (Appendix S1). The 10 most com‐
monly used were (a) annual mean temperature (98 studies); (b) total 
annual precipitation (87); (c) precipitation seasonality (70); (d) tem‐
perature seasonality (69); (e) precipitation of the driest period (68); 
(f) minimum temperature of the coldest period (66); (g) mean diurnal 
range (65); (h) isothermality (63); (i) precipitation of the coldest quar‐
ter (60) and (j) temperature annual range (60) (Table 1). All the top 10 
SDM variables were from the standard list of 19 “Bioclim” variables 
available from WorldClim (Hijmans, Cameron, Parra, Jones, & Jarvis, 
2005). Forty‐four studies (29%) used the full set of 19 WorldClim 

variables in their models (Appendix S3: Figure S1). Ninety‐six unique 
climate variables were identified from the 150 plant physiology 
studies (Appendix S1). After accounting for non‐significance, the 10 
most commonly used variables were (a) soil water content during 
the growing season (38); (b) mean growing season temperature (29); 
(c) growing season precipitation (17); (d) total summer precipitation 
(11); (e) total annual precipitation (7); (f) growing season length (6); (g) 
maximum temperature during the growing season; (h) mean annual 
temperature (5.4); (i) mean summer temperature (5); and (j) summer 
soil water content (5) (Table 2).

We found strong concordance between variable ranking in the 
original and new samples (mean statistics for n  =  999: W  =  0.76, 
p = <0.01; p‐value range: 1.22 × 10−14, 1.62 × 10−1; W statistic range: 
0.69, 0.83). This supports the robustness of the ranking order of our 
physiology variables.

Total annual precipitation and mean annual temperature were 
the only variables that featured in both the SDM and physiology top 
10 lists. Of the top 10 SDM variables, six captured variation or ex‐
tremes of temperature and four captured variation or extremes of 
precipitation. The top 10 physiology variables were more diverse in 
the aspects of climate that they describe and placed greater empha‐
sis on water availability. Soil moisture content was the most com‐
monly identified physiology variable yet was only included in one 
SDM study. The timing of climatic events within the growing season 
was important to five of the physiology variables but was not explic‐
itly featured in any of the SDM variables.

3.2 | Spatial patterns

Comparison of global maps depicting the mean values for the SDM 
and physiology variables indicate that the spatial patterns of climate 
they describe are dissimilar. For example, global variation in grow‐
ing season soil moisture content, the top physiology variable, was 
not matched by any of the SDM precipitation variables; growing 
season soil moisture content showed a more patchy distribution, 
particularly in the Northern Hemisphere, whereas variation in the 
SDM precipitation variables generally radiated out from the equa‐
tor. Similarly, temperature seasonality and maximum temperature 
during the growing season, the variables ranking fourth and seventh 
in the SDM and physiology top 10, respectively, showed clear dif‐
ferences in spatial variation despite both describing temperature in‐
dices of climate. Maximum temperature during the growing season 
captures climatic variation more independently of equatorial influ‐
ence than temperature seasonality and acknowledges that extreme 
high temperatures (>35 C) will be detrimental to plant growth. The 
physiology variables appeared to show greater spatial heterogeneity 
in climatic variation, particularly for the temperature‐related vari‐
ables. The physiology variables highlighted areas with climates dis‐
tinct from that of the general trend in the surrounding area, such as 
along the west coast of South America, whereas the SDM variable 
appeared to smooth out these nuances. Global maps of the top 10 
SDM and physiology variables (averaged for the period 2000–2017) 
are shown in Appendix S3: Figures S3 and S4.
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3.3 | Principal component analyses

The first three components for the SDM and physiology variables 
explained 86% and 94% of the variance, respectively (Tables 3 and 
4). For the SDM variables, PC1 explained 58% of the variation and 
was most strongly correlated with temperature seasonality (−0.43) 
and temperature annual range (−0.43). Mean diurnal range (−0.41) 
and isothermality (0.40) also loaded relatively strongly in opposing 
directions. In general, coastal areas scored higher than their adjacent 
continental space, suggesting that this PC describes well the conti‐
nentality of an area (Figure 1). PC2 explained an additional 23% of 
the cumulative variation in SDM variables and was correlated most 
strongly with precipitation seasonality (0.66), precipitation of the 
driest period (−0.55) and precipitation of the coldest quarter (−0.37). 
PC3 was correlated most strongly with precipitation of the coldest 
quarter (−0.62), precipitation seasonality (−0.51) and precipitation of 
the coldest quarter (0.48) (Table 3).

For the physiology variables, PC1 explained 67% of the varia‐
tion and was most strongly correlated with growing season length 
(0.40), growing season soil moisture (0.39) and mean growing sea‐
son temperature (0.39). PC2 explained an additional 24% of the cu‐
mulative variation and was positively correlated with summer soil 

water content (0.68) and negatively correlated with mean summer 
temperature (−0.43). PC3 was most strongly correlated with growing 
season precipitation (−0.54) and summer soil water content (0.51) 
(Table 4). Overall, PC scores appear to describe the tropicality of an 
area. Each PC for the physiology variables captures a balance be‐
tween temperature and soil moisture variables, rather than consid‐
ering temperature and water variables more independently as seen 
for the SDM variables.

Figures 1 and 2 show the global variation in climate conditions as 
described by the first three PCs for SDM and physiology variables.

Although PCA can identify which aspects of climate describe 
most variation in the raw data, PC scores are not directly compa‐
rable across different variable sets. The minimum residual scores 
ranged from 0.000024 to 1.80 (Figure 3). Areas with the largest 
residual differences included parts of Central Africa, north‐east‐
ern South America and Southeast Asia, including the islands of 
Indonesia. Many of these areas experience tropical climate (cf. 
Geiger, 1961; Kottek, Grieser, Beck, Rudolf, & Rubel, 2006), re‐
flecting the differences in the aspects of climate described by the 
SDM and physiology PCs; each SDM PC described independently 
either aspects of climate related to precipitation or to temperature, 
whereas all PCs for the physiology variables described aspects 

TA B L E  2   Summary of the top 10 climate variables used in the plant physiology studies, including variable descriptions and the temporal 
scales of data required to calculate each variable

Rank Variable name Variable description
Temporal scale of data to 
calculate variable

Number of 
studies

1 Soil water content during 
growing season

The amount of water in the soil during the growing sea‐
son (including volumetric, fractional and gravimetric 
calculations)a

Dailyb 38

2 Mean growing season 
temperature

The average daily temperature during the growing seasona Daily 29

3 Total precipitation during 
growing season

Total precipitation falling during the growing seasona Dailyb 17

4 Total summer precipitation Total precipitation falling during the summerc Daily 10.1 (11 
significant)

5 Total annual precipitation The sum of all precipitation values over a year Daily 7

6 Length of growing season The entire period (in days) in which plant growth can  
theoretically take place (Carter, 1998) over the course of 
1‐yeara

Dailyb 7

7 Maximum temperature dur‐
ing the growing season

The maximum temperature during the growing seasona Daily 6

8 Mean annual temperature See BIO1. The mean of all weekly mean temperatures over 
a year

Weekly 5.4 (7 
(significant)

9 Mean summer temperature The mean temperature during the 3‐month (91‐day) Summer 
period

Daily 5

10 Summer soil water content The average amount of water in the soil during the 3‐month 
Summer periodc

Daily 5

aFor the purposes of calculation, we define growing season as any period where daytime temperatures are >5 C and <35 C and precipitation is >half 
evapotranspiration for five consecutive days. 
bThe definition of growing season used in this study requires daily climate data, but temporal scale may vary for other definitions. For example, if 
growing season is defined as a period of months, monthly average data may be sufficient; if growing season is defined by date of snow release, daily 
climate data will be required. 
cDefinitions in original study may vary, but explicitly state “summer.” For the purposes of calculation, we define summer as 1st June–31st August 
(Northern Hemisphere) or 1st December to 2nd March (Southern Hemisphere). 



1324  |     GARDNER et al.

of climate associated with tropicality and the mutual availability 
of water and temperature. This analysis confirmed that in some 
areas, the SDM and physiology variables capture different aspects 
of climate variation and this could have important implications for 
the reliability of SDM predictions.

3.4 | Correlation with species number

Individually, total annual precipitation, mean diurnal range, tempera‐
ture isothermality and temperature annual range (rankings 2, 7, 8 
and 9, respectively) were more likely to be used with an increasing 
number of study species (GLM, p = 0.02, p = 0.02, p = 0.03, p = 0.04) 
(Table 1). When considered together, however, use of at least one 
of the SDM top 10 variables was not found to be related to study 
species number (GLM, p  =  0.79). The likelihood of one of the top 
10 physiology variables being reported as significant in the physiol‐
ogy literature was not related to the number of study species (GLM, 
p = 0.68).

4  | DISCUSSION

4.1 | Variable selection as a predictor of plant 
distributions

The climate variables used in SDMs are assumed to reflect the 
physiological constraints on the study species that affect where 
they can survive in the wild (Kearney & Porter, 2009). Proximal 
variables represent a direct link between climate and physiol‐
ogy (Austin, 2002; Jackson et al., 2009) and as physiological lim‐
its are inherent traits, their influences on a species' distribution 
are more likely to be conserved in time and space (Austin, 2002, 
2007). Distal variables, however, correlate indirectly to species' 
physiology through their relationship to the proximal variables 

they replace (Merow et al., 2014). Although distal variables may 
provide a good “mean field approximation” for proximal predictors 
under existing climates (Bennie et al., 2014), it cannot be assumed 
that this relationship will be conserved in time and space, and in 
consequence, the use of distal variables in predictive models is 
questionable. Physiological variables may therefore be more ro‐
bust predictors of species distributions in novel climates and loca‐
tions (Austin, 2002).

The results from our literature review affirm our first hypoth‐
esis: the climate variables used in SDMs are different from those 
known directly to influence plant physiology. Most notably, the 
top physiology variables highlight an important role of soil mois‐
ture content and suggest that the growing season is a critical time 
period for climatic influence on plants. The top 10 SDM variables, 
however, are skewed towards the use of temperature indices of 
climate, neglect the influence of soil water availability and mostly 
capture annual or seasonal trends rather than the timing of climate 
events within important periods of plant growth and develop‐
ment. In this way, the most common SDM variables are considered 
to be distal indicators of plant distributions and may struggle to 
replicate physiologically relevant aspects of climate variation (Elith 
& Leathwick, 2009).

Lack of consideration of soil moisture content is an important 
omission from the top SDM variables. Almost every physiological 
process in plants is affected directly or indirectly by water sup‐
ply (Kramer & Boyer, 1995), and soil water conditions have been 
shown to be a primary determinant of small‐scale plant distributions 
(Engelbrecht et al., 2007; Tromp‐van Meerveld & McDonnell, 2006) 
and overall habitat type (Moeslund et al., 2013). Schietti et al. (2014), 
for example, found that 82% of the variation in plant composition 
in Amazon terra firme forest could be explained by the depth of 

TA B L E  3   Summary of principal component analysis for SDM 
variables, including variable loadings for principal components 1–3

Variable name PC1 PC2 PC3

Precipitation of the driest 
period

0.227 0.553 0.054

Precipitation seasonality 0.013 −0.660 −0.514

Precipitation of the cold‐
est quarter

0.316 0.374 −0.617

Mean diurnal range −0.411 −0.041 −0.036

Isothermality 0.396 −0.019 −0.284

Temperature seasonality −0.433 0.197 −0.185

Minimum temperature of 
the coldest period

0.384 −0.206 0.484

Temperature annual range −0.434 0.187 −0.050

Standard deviation 2.158 1.343 0.661

Proportion of variance 0.582 0.226 0.055

Cumulative proportion of 
variance

0.582 0.808 0.862

TA B L E  4   Summary of principal component analysis for 
physiology variables, including variable loadings for principal 
components 1–3

Variable name PC1 PC2 PC3

Growing season soil mois‐
ture content

0.393 0.264 −0.235

Growing season length 0.404 0.105 0.049

Mean growing season 
temperature

0.390 −0.235 0.351

Summer soil water content −0.062 0.676 0.512

Maximum growing season 
temperature

0.385 −0.236 0.495

Growing season 
precipitation

0.369 0.298 −0.540

Total summer precipitation 0.372 0.283 0.050

Mean summer temperature 0.321 −0.427 −0.133

Standard deviation 2.317 1.397 0.487

Proportion of variance 0.671 0.244 0.030

Cumulative proportion of 
variance

0.671 0.915 0.944
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F I G U R E  1   Global maps of climate variation as described by the first three principal components (PCs) associated with the SDM variables: 
(a) PC1; (b) PC2; (c) PC3
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F I G U R E  2   Global maps of climate variation as described by the first three principal components (PCs) associated with the physiology 
variables: (a) PC1; (b) PC2; (c) PC3
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the water‐table, and diversity in plant communities from the South 
African Fynbos (Araya, Gowing, & Dise, 2010) to English meadows 
(Silvertown, Dodd, Gowing, & Mountford., 1999) has been attributed 
to hydrological niche separation.

Precipitation is often selected as a distal predictor for soil mois‐
ture (e.g., Austin & Van Niel, 2011) and, indeed, four of the top 10 
SDM variables related to precipitation. However, precipitation has 
been shown to be a poor proxy for soil moisture conditions (Piedallu, 
Gégout, Perez, & Lebourgeois, 2013) and may therefore fail accu‐
rately to capture the amount of water that ultimately becomes avail‐
able to plants (Dilts, Wesiberg, Dencker, & Chambers, 2015). The 
discrepancy between precipitation and soil moisture variables may 
become increasingly important at finer spatial scales, where topog‐
raphy has greater influence on soil water content (Daws, Mullins, 
Burslem, Paton, & Dalling, 2002; Maclean, Bennie, Scott, & Wilson, 
2012) or in transition zones between wet and dry climates where 
evaporation is high and feedbacks between soil moisture and precip‐
itation occur (Koster et al., 2004). Substituting soil moisture variables 
with precipitation surrogates could therefore threaten the reliability 
of SDMs (Weltzin et al., 2003), and indeed, explicitly incorporating 
soil moisture predictors into SDMs for plants has been suggested 
as a way to increase the reliability of subsequent range predictions 
(e.g., Whitehead, 2001).

Another feature of the physiology variables is that the growing 
season emerges as a critical period for climate influence on plants; 
five of the top 10 physiology variables featured the growing season, 
but this was not explicit in any of the top 10 SDM variables. This 
omission carries similar issues to those discussed for soil moisture, 
as without consideration for this important period for plant growth 
the SDM variables may fail to capture the aspects of climate that 
limit plant distributions. For example, although mean annual tem‐
perature may be correlated with mean growing season temperature, 

the former may obscure periods of high or low temperatures when 
plants are most sensitive to environmental conditions or have 
greater requirements for warmth. As with the use of precipitation 
as a proxy for soil moisture content, the use of distal predictors that 
consider monthly or yearly climate averages rather than conditions 
specifically within the growing season period may have negative im‐
plications for the reliability of range predictions.

The PCAs highlight that variation among the top 10 physiology 
variables can be described by aspects of climate related to tropical‐
ity, particularly the combined strength of accumulated temperature, 
soil moisture content and precipitation during the growing season. 
Variance among the SDM variables, however, is described by factors 
reflecting the variability and extremes of temperature and precipita‐
tion throughout the year and could be considered to define climate 
continentality.

The PCA results suggest that, physiologically, it is important that 
climate variables consider the mutual availability of temperature 
and water (i.e., “better together”) whereas the SDM variables de‐
scribe the ranges or extremes in these aspects of climate (and usu‐
ally model them independently of each other). Most plant phyla are 
known to have evolved during a “tropical planet” (Benton, 1993) and 
high niche conservatism in plants (Prinzing, 2001; Romdal, Araújo, & 
Rahbek, 2013) means that many species are likely to have retained a 
tropical affinity (Wiens & Donoghue, 2004). Our results concur with 
this hypothesis as climate variables indicating tropicality, particularly 
combinations of temperature and water, were found to be physio‐
logically important to plants.

Our second hypothesis was also supported. By calculating and 
mapping globally the minimum residual differences between PC 
scores for the SDM and physiology variables, we show that the spa‐
tial patterns of climate variation described by the most commonly 
used SDM variables do not match those described by physiologically 

F I G U R E  3   Global map of the minimum residual differences from multiple regression analyses of SDM principal components 1–3 using 
scores from principal components 1–3 for the physiology variables as predictors
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relevant variables. We conclude that the top 10 SDM variables are 
distal indicators of species distributions.

Residual differences were greatest in areas where precipitation 
regimes or the mutual availability of temperature and water become 
more important to the classification of climate, which confirms that 
the SDM variables are poor proxies for physiological variables that 
relate to water availability, particularly soil moisture content and the 
timing of rainfall within the growing season. Areas of hot desert and 
polar climates (as defined by the Köppen‐Geiger climate classifica‐
tion system—Geiger, 1961; see Kottek et al., 2006 for updated global 
map), however, were, in general, similarly described by both sets of 
variables. These are areas of temperature extremes (although in op‐
posing directions) which suggests that once a certain temperature 
threshold is reached, average climate data can adequately capture 
physiologically limiting conditions and may be good substitutes for 
more proximal variables in these cases.

Importantly, many areas with larger residual differences are con‐
sidered conservation priorities (Myers, Mittermeier, Mittermeier, Da 
Fonseca, & Kent, 2000) due to a combination of high biodiversity 
(Mittermeier, Myers, Thomsen, Da Fonseca, & Olivieri, 1998) and 
vulnerability to climate change (Malcolm, Liu, Neilson, Hansen, & 
Hannah, 2006). For example, there were large differences in scores 
in the Indo‐Burma biodiversity hotspot in tropical Asia, as well as the 
tropical rainforest regions of South America and Indonesia, which 
all experience consistently high rainfall and warm temperatures 
throughout the year. There were also large residual differences in 
the Himalayan, Appalachian and Scandinavian mountain regions, 
which may reflect the fact that soil moisture content can be highly 
spatially (le Roux, Aalto, & Luoto, 2013) and temporally (Kemppinen, 
Niittynen, Riihmäki, & Luoto, 2018) heterogeneous and may show 
weak correlations to precipitation in mountainous terrains (le Roux 
et al., 2013). It may therefore be especially important to consider 
using more proximal climate variables when studying species distri‐
butions in tropical or mountainous areas, particularly if the results 
will inform conservation policy or planning decisions to protect 
global biodiversity.

4.2 | Variable selection in a changing climate

Species distribution models have become a popular tool among 
ecologists and conservation biologists to predict how species might 
respond to climate change (Pearson & Dawson, 2003). Indeed, in the 
studies we examined, nearly one‐third (48/150) aimed to predict 
species response to climate change as their primary objective and 
most referred to the application of SDMs for this purpose. As the 
climate warms further and the results of previous change become 
more evident, the role of SDMs to predict the impacts of climate 
change on species distributions and aid conservation strategies is 
likely to grow and many authors have highlighted the need to ac‐
count for climate change in protected area design (Araújo, Cabez, 
Thuiller, Hannah, & Williams, 2004; Hannah et al., 2007) and to as‐
sess the best locations to protect species of conservation priority 
(e.g., 20082008; Porfirio et al., 2014).

When applying SDMs to climate change studies, the variables 
selected for modelling are assumed to be good predictors of a spe‐
cies' range in a new time and place. Until a forecasted future climate 
is realized, however, it will be impossible to determine the accuracy 
of these predictions. A major advantage of using proximal climate 
variables is that their direct link to physiology and therefore species 
distributions can be quantified and is unlikely to change significantly 
over the modelled time period (acknowledging that although local 
adaptation may occur), it is unlikely to match the rate of climate 
change (Davis & Shaw, 2001). This means proximal variables are 
likely to be more reliable indicators of future species distributions.

The distal variables used often in correlative studies may pro‐
vide less robust estimates of future ranges as their correlations to 
proximal variables cannot confidently be extrapolated over space or 
time (Elith & Leathwick, 2009). Unquantified additional factors may 
support a relationship between a distal variable and species distribu‐
tions in the present day. The contribution of these “hidden” variables 
may break down or cease to apply in new locations or over new time 
periods and thus lead to unreliable predictions from SDMs. Basing 
future range predictions purely on changes to a distal climate vari‐
able may therefore be problematic if the climatic component of the 
original correlation does not match physiologically relevant patterns 
of variation.

We show here that, on a coarse‐scale, the spatial patterns of cli‐
mate variation described by the SDM variables differ from the key 
physiology variables. Although we cannot prove that our physiology 
variables would be appropriate indicators of changes in species dis‐
tributions at the level at which the organism responds, they maintain 
a justifiable link to limiting processes over both spatial and temporal 
scales that cannot be assumed for the SDM variables. Selection of 
more proximal variables could help to ensure that the predictions 
from SDMs which inform important conservation decisions are as 
accurate and reliable as possible and do not over‐ or under‐estimate 
ranges to the point where protected areas may fail to protect the 
species of interest.

Alongside raising the need for accurate predictions of species 
ranges, climate change will increase the challenges associated with 
modelling their distributions. For example, climate change is ex‐
pected to increase the frequency and intensity of extreme weather 
events (Collins et al., 2013) which can advance the change in spe‐
cies composition in response to altered environmental conditions 
(Jentsch, Kreyling, & Beierkuhnlein, 2007). The possibility of more 
extreme weather supports the use of physiologically relevant climate 
variables as correlations between proximal variables that reflect cli‐
matic events and those describing averaged trends may weaken or 
break down in more unpredictable climates. Fay, Carlisle, Knapp, 
Blair, and Collins (2003), for example, show that increased variabil‐
ity of rainfall, without reduction in the overall rainfall amount, can 
reduce above ground net primary productivity in a tall‐grass prairie 
in Kansas.

Similarly, Orlowsky and Seneviratne (2012) report that pre‐
dicted future seasonal extremes of temperature scale with changes 
in global annual mean temperature by a factor of more than two, 

sps:https://onlinelibrary.wiley.com/doi/full/10.1111/ele.12189ele12189-bib-0038
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with the consequence that limiting thresholds of temperature may 
not be captured in averaged data (e.g., Parker & Abatzoglou, 2017). 
Although recent range expansions have been attributed to rises in 
mean annual temperatures (Wilson et al., 2005), this means that spe‐
cies responses to distal predictors are likely to be lagged, and the 
absolute number of days outside of their physiological tolerance may 
increase on a much shorter time‐scale (Parmesan, Root, & Willig, 
2000). Late frosts or summer heatwaves, for example, are likely to 
impact species almost immediately if these affect their ability to 
survive, grow and reproduce and proximal variables would be able 
to capture these tolerances and track changes to species distribu‐
tions occurring in “real‐time.” This may also provide information on 
changes to species distributions on a time‐scale that is more relevant 
to conservation decision‐making and facilitate the development of 
proactive management strategies.

A lengthening of the growing season is another expected re‐
sult of climate change (Jentsch et al., 2007) and has already been 
observed in higher latitudes (Menzel & Fabian, 1999). We have 
identified that climate conditions during the growing season have 
important physiological implications for plants and it could therefore 
become even more crucial for variables explicitly to consider climate 
conditions within this period in the future. Mosedale, Wilson, and 
Maclean (2015), for example, show that although climate change 
may generally improve growing conditions for grapevine, the risk of 
frost damage during spring increases under many scenarios due to 
advancement in the timing of budbreak. A longer growing season 
could therefore leave agricultural crops more vulnerable to extreme 
events which currently tend to occur outside of this critical period 
(Lesk, Rowhani, & Ramankutty, 2016). To base crop selection deci‐
sions on SDMs that do not consider how climate change may alter 
conditions during the sensitive growth stages of plants is a risk to 
livelihoods and food security.

Understanding the proximal drivers of the natural or farmed 
distributions of agricultural crops could be important to maintain 
yields in species which are threatened by a changing climate (e.g., 
Ray, Gerber, MacDonald, & West, 2015). Crop SDMs that use prox‐
imal climate variables may be more appropriate to inform smart fu‐
ture land use planning and crop decision‐making based on species' 
environmental optima and tolerances. Similarly, proximal variables 
may be better able to suggest how management practices could be 
adjusted to grow new crops, such as through the use of greenhouses 
to raise growing season temperatures, or to mitigate the impacts of 
a changing climate on yields, such as through the use of irrigation in 
areas which become more arid.

4.3 | Using physiological variables

Species distributions are shaped ultimately by interrelations between 
climate conditions and biological traits (Sterck, Markesteijn, Toledo, 
Schieving, & Poorter, 2014). In their study of North American tree 
species, Morin, Augspurger, and Chuine (2007), for example, show 
how physiological responses to climate conditions constrain species' 
ranges, particularly through impacts on phenological processes such 

as fruit ripening and flowering. Similarly, Thuiller, Lavorel, Midgley, 
Lavergne, and Rebelo (2004) showed that gradients in climate ex‐
plain almost all variation in the niche distribution of 88 flowering 
plants of the Cape Floristic Region, South Africa, with niche differ‐
entiation characterized by differences in traits such as leaf area and 
timing of initiation of flowering. The variables used in SDMs attempt 
to capture, at the population‐level, the effect of many individuals 
responding to climatic pressures and must therefore offer a good 
“mean field approximation” for biological processes that deter‐
mine whether a species can survive, grow and reproduce in an area 
(Bennie et al., 2014). Proximal variables are intimately tied to biologi‐
cal process of the study species and as such, may provide better ap‐
proximations of the climatic requirements of a species that influence 
their distributions (Kearney & Porter, 2009).

The physiology variables identified in this study derive from 
experimental studies, where plant responses to climate are often 
quantified very close to the individual (within metres or even less). 
We recognize that in modelling these variables at coarse‐resolu‐
tion, conditions may differ significantly from those experienced by 
plants (Bramer et al., 2018; Tabor & Williams, 2010) but importantly, 
and unlike the SDM proxies, these variables retain a direct link to 
physiological processes. Our inability to construct the physiology 
variables at a fine‐resolution highlights the current limitations to ef‐
fectively mapping species distributions with available climate data. 
Physiological variables may be excluded from SDMs because the 
data required to construct them are unavailable (Kearney & Porter, 
2009) and it is likely that our list of the top 10 SDM variables reflects 
these data deficiencies; global climate surfaces for Bioclim variables 
are readily downloadable at 1 km resolution whereas no equivalent 
dataset exists for the physiological variables (Bramer et al., 2018).

Models which allow microclimate conditions to be estimated from 
coarse‐grid data do exist. The microclimate model of NicheMapper, 
for example, can be used to predict hourly local microclimates from 
macroscale data (Kearney, Shamakhy, et al., 2014). However, a num‐
ber of climate forcing variables are required as inputs and the reli‐
ability of microclimate estimates may be compromised if hourly data 
are unavailable and therefore obtained by interpolation. Readily 
available datasets of ecophysiologically meaningful variables, or fine 
spatial and temporal climate data, which allow such variables to be 
derived (Kearney, Isaac, & Porter, 2014), are therefore much needed. 
To achieve this, it will be crucial to expand monitoring networks for 
physiologically relevant climate variables or further develop and im‐
plement methods that downscale coarse climate data to predict local 
variability in these conditions (e.g., microclima (Maclean, Mosedale, 
& Bennie, 2018); NicheMapper (Kearney, Shamakhy, et al., 2014); 
NicheMapR (Kearney & Porter, 2017); Maclean, Suggitt, Wilson, 
Duffy, & Bennie, 2017).

To predict how climate change may impact species distribu‐
tions, physiological datasets for potential future climate scenar‐
ios will also be required. This may be possible through the use of 
statistical weather generators which produce multiple statistically 
plausible simulations of weather at temporal resolutions (e.g., 
Ivanov, Bras, & Curtis, 2007) which could in aggregate be used to 
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generate probabilistic estimates of physiologically relevant variables. 
Importantly, this approach to modelling future climate conditions 
can capture changes to climate extremes and variability (Semenov & 
Barrow, 1997) and has been applied with success in the agricultural 
literature in studies of crop suitability (e.g., White, Hoogenboom, 
Kimball, & Wall, 2011; Holzkämper, Calanca, Honti, & Fuhrer, 2015) 
and future climatic risk (Mosedale et al., 2015). Meanwhile, a useful 
next step would be to test the ability of our top 10 physiological vari‐
ables to predict the current distributions of some species.

5  | CONCLUSION

Species distribution models should be constructed using aspects 
of climate to which the study species is known or most likely to 
respond (Bramer et al., 2018; Suggitt et al., 2017). We have shown 
here that the most commonly used SDM variables often neglect 
important physiological factors and, in particular, that soil moisture 
content and the timing of climatic events during the growing season 
should feature more explicitly in the climate variables used in plant 
SDMs. We echo other researchers in that climate variables should 
be justified based on the physiology of the study species (e.g., 
Austin & Van Niel, 2011), but more specifically, that they should 
be closely related to these proximal mechanisms. This is likely to 
be particularly important when predicting species distributions in 
tropical or mountainous environments, where we suggest that the 
results of SDMs that use distal variables are interpreted with more 
caution.

Data deficiencies are often considered a limiting factor for the 
use of proximal variables in SDMs. With the advent and recent im‐
provements in remote sensing technology, there are more opportu‐
nities than ever before to measure physiologically relevant variables 
and use these data to model species distributions (e.g., Kemppinen et 
al., 2018). Wherever possible, new technologies should be exploited 
to expand physiologically relevant climate datasets as this could help 
prevent variable use being compromised based on data availability. 
We also urge climatologists to consider, as a matter of priority, the 
development of high‐resolution climate surfaces for physiologically 
meaningful variables. The ability of statistical weather generators to 
provide information on physiological conditions for possible future 
climate scenarios should also be explored. There is a growing de‐
mand for robust predictions of species distributions and taking steps 
to make physiologically relevant climate data more widely available 
for use in SDMs could support the best conservation decisions to 
protect global biodiversity as the climate changes.
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