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Abstract
Aim: Species respond to environmental conditions and so reliable assessments of 
climate suitability are important for predicting how climate change could alter their 
distributions. Long-term average climate data are often used to evaluate the climate 
suitability of an area, but in these aggregated climate datasets, inter-annual variabil-
ity is lost. Due to non-linearity in species’ biological responses to climate, estimates 
of long-term climate suitability from average climate data may be biased and so dif-
fer from estimates derived from the average annual suitability over the same period 
(average response). We investigate the extent to which such differences manifest in 
a regional assessment of climate suitability for 255 plant species across two 17-year 
time periods.
Location: Cornwall in South-West England provides a case study.
Taxon: Plantae.
Methods: We run a simple mechanistic climate suitability model and derive quantita-
tive estimates of climate suitability for 1984–2000 and 2001–2017. For each period, 
we run the model using climate data representing average monthly values for that 
period. We then run the model for each year using monthly climate data for that year 
and average the annual suitability scores across each period (average response). We 
compare estimates of climate suitability from these two approaches.
Results: Average climate data gave higher estimates of suitability than the average 
response, suggesting bias against years of poor suitability in temporally aggregated 
climate datasets. Differences between suitability estimates were larger in areas of 
high climate variability and correlated with species’ environmental requirements, 
being larger for species with small thermal niches and narrow ranges of precipitation 
tolerance.
Main Conclusions: Incorporating inter-annual variability into climate suitability as-
sessments or understanding the extent to which average climate data might obscure 
this variance will be important to predict reliably the impacts of climate change on 
species distributions and should be considered when using mechanistic species dis-
tribution models.
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1  |  INTRODUC TION

Recent climate change has driven shifts in the geographic ranges 
of species (e.g. D’Andrea et al., 2009; Kelly & Goulden, 2008; Zorio 
et al., 2016) and further range shifts are expected as the climate con-
tinues to warm and weather patterns become more variable (Collins 
et al., 2013; Leemans & Solomon, 1993). Tools to predict how a 
changing climate might alter species distributions have been applied 
widely in studies of biogeography, ecology and conservation biol-
ogy and for species in both natural and cultivated systems. Inter alia, 
this information has helped to suggest how habitat suitability may 
be altered (Bunn et al., 2015; Dyderski et al., 2018), the risks posed 
by invasive species (Paini et al., 2016; Petitpierre et al., 2016) and 
where conservation efforts may experience conflict with changing 
land uses, including agricultural production (Hannah et al., 2013). 
The reliability of these predictions therefore has bearing on mea-
sures taken to limit biodiversity loss, ensure food security and main-
tain the ecosystem functions upon which human society depends.

Methods to predict species’ responses to climate change often 
begin with the characterisation of a ‘suitable climate’. By under-
standing a species’ environmental requirements (a mechanistic 
or physiological approach) or by drawing statistical relationships 
between presence/absence records and the climate in these loca-
tions (a correlative approach), we might hope to identify the areas 
where conditions might be favourable in the future. The spatial and 
temporal resolution of climate data used in these assessments can 
affect how reliably suitable climate is identified (and for correla-
tive approaches these factors can also affect the accuracy of the 
definition of a suitable climate; e.g. Austin & Van Niel, 2011). Potter 
et al. (2013), for example, show how grid cell sizes (spatial resolution) 
of the climate data used in species distribution models (SDMs) are 
often far larger than the plants or animals being studied and this may 
be problematic if cell average climate variables are dissociated from 
physical and biological processes and become poor predictors of 
species persistence (Bennie et al., 2014). Kearney et al. (2012) show 
that high temporal resolution data may be required to get closer to 
the temporal scale that catches variability relevant to biological and 
ecological processes and to predict climatic impacts on species’ sur-
vival, growth and reproduction. If the spatial or temporal resolution 
of climate data is inappropriate, we may be unable to reconstruct 
effectively the climate conditions imposing constraints on organism 
performance, and the resulting predictions of where suitable climate 
might be found may be unreliable.

How the temporal resolution of climate data may affect predic-
tions of climate suitability has received far less attention than has 
the effects of using climate data at different spatial resolutions (e.g. 
Gillingham et al., 2012; Lembrechts et al., 2019), but it is generally 
considered that accuracy is improved by using variables that capture 

short-term climate variation (e.g. Nadeau et al., 2017). However, the 
issue of temporal resolution extends beyond the variables used ini-
tially to define a species’ climatic niche, and how proximal these are 
to the temporal scales at which organisms respond to their environ-
ment and to the way in which these variables are then applied to 
assess long-term suitability.

Standard approaches to climate change modelling use climate 
variable datasets averaged over periods of c. 30 years (Elith et al., 
2006; Serra-Diaz et al., 2014) to predict how species distributions 
may change according to altered averages between a baseline (cur-
rent) and projected (future) period. Gardner et al. (2019), for ex-
ample, find that the most widely used climate dataset in the SDM 
literature is WorldClim, which provides temperature and precipita-
tion variables for 1970–2000 and projections for four future 20-year 
climate periods under different representative concentration path-
ways (RCPs; Hijmans et al., 2005). By averaging conditions over mul-
tiple years, aggregation bias may accrue even if the original variables 
are measured over a short time period (e.g. daily). This is because bi-
ological (and therefore species’) responses to climate are often non-
linear, such that the mean response to climate cannot be taken to be 
the same as the response to mean climate (Bütikofer et al., 2020).

Most species complete an annual cycle, so climate conditions 
over the course of a year are often most relevant. When aiming 
to predict climate suitability over multiple years, the use of aggre-
gated climate datasets can obscure year-to-year variability and ex-
treme values and, therefore, bias results. During short periods (e.g. 
a single year) of unfavourable climate, local extinctions may occur 
even if conditions, on average, remain suitable (Briscoe et al., 2016) 
or the overall trend is increasing climatic suitability (Vasseur et al., 
2014). Equally, short periods of favourable climate that might allow 
a species to move into a new area may be missed. Some plant spe-
cies, for example, remain dormant as seeds until a favourable sea-
son and during these ‘good years’ could expand their range (Walck 
et al., 2011). Thus, species may be present in areas that average data 
would consider climatically unsuitable, or absent from areas that av-
erage data would consider climatically suitable.

While it has been shown previously that incorporating climate 
variability into species distribution models can improve predic-
tions of species occurrences (Bateman et al., 2016) and niche char-
acterisation (Perez-Navarro et al., 2021), these are rare insights 
into the effects of inter-annual climatic variability on long-term 
suitability estimates. To date, no study has examined this effect 
when using a mechanistic species distribution model. This is im-
portant to test because mechanistic models are thought to give 
robust estimates of suitability due to their proximate links to spe-
cies’ physiology (Jackson et al., 2009). Indeed, there is increasing 
emphasis in the species distribution modelling literature on the 
benefits of using mechanistic models, and particularly, how their 
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physiological basis means that the results from these models can 
be extrapolated to predict reliably suitability over space and time 
(Austin, 2002). However, it is possible that when average climate 
data are used, even if the variables constructed hold physiolog-
ical relevance that this averaging causes sufficient dissociation 
between species responses and climate that model outcomes are 
affected. Thus, incorporating inter-annual variation may be nec-
essary to gain the fundamental ecological and biogeographical 
understanding that might otherwise be assumed to be achieved 
simply by using a mechanistic approach to species distribution 
modelling (Jackson et al., 2009).

The physiological basis of mechanistic models means that they 
are preferred when aiming to predict suitability over space and 
time (Kearney & Porter, 2009). However, if predictions of climate 
suitability from mechanistic models based on average climate data 
cause important gaps in a species’ climate path to be missed (Early 
& Sax, 2011), this could mask species’ vulnerability to climate 
change (Reside et al., 2010) or downplay the impacts of climate 
change on their distributions (Bateman et al., 2012), depending on 
the extent of a species’ response to climate, whether it is occupy-
ing the warmer or cooler edge of its range margin, and the overall 
suitability of the climate in any given year. Any benefit derived 
from incorporating inter-annual variability into a correlative SDM 
may not compensate for the fact that results will remain difficult 
to extrapolate into novel environments (Strasburg et al., 2007). 
Therefore, we need to know how mechanistic models are affected 
by the use of average climate data to ensure we can answer some 
of the most important questions in ecological research, namely 
how climate change may affect climate suitability for species in 
the future.

In this study, we explore the potential for average climate 
data to affect long-term estimates of climate suitability from a 
mechanistic model. For this, we use information on the environ-
mental tolerance ranges of 255 species, as documented in the 
FAO Ecocrop database (FAO, 2000), to run the climate suitability 
model Ecocrop (Hijmans et al., 2017). Ecocrop takes temperature 
and precipitation data as inputs and considers species’ tolerance 
thresholds for these parameters throughout their growing season 
to return an estimate of climatic suitability for an area. We run 
the Ecocrop model with average climate data for 1984–2000 and 
2001–2017 (average climate) and then run the model for each year 
1984–2017 before averaging the annual model outputs across 
the same two periods (average response). We compare estimates 
of suitability for each period considering the climatic variability 
within these periods.

Ecocrop has been used to predict how agriculture may be im-
pacted by climate change (e.g. Hunter & Crespo, 2019; Jarvis et al., 
2012; Rippke et al., 2016) and has been shown to provide reliable 
results (Ramirez-Villegas et al., 2013). Nevertheless, we emphasise 
that we do not seek to provide robust estimates of climate suitability 
for the modelled species. Rather, we assess whether temporal ag-
gregation of climate data affects these estimates, not the estimates 
per se.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

Climate suitability was assessed across Cornwall and the Isles 
of Scilly in south-west England, as an example, at 100  m spatial 
resolution. Temperature and precipitation in the region vary spa-
tially (Maclean et al., 2015) and also temporally (Figure 1a–c). 

F I G U R E  1  Mean annual temperature (a), minimum annual 
temperature (b) and total annual precipitation (c) trends for 
Cornwall and the Isles of Scilly (1984–2017). Black dots indicate 
mean values in each year, solid line represents the linear trend and 
dotted line indicates the mean value across all years. All values 
are the mean across the full study region and calculated from the 
hourly temperature and daily precipitation data derived to run the 
Ecocrop model
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Annual mean and minimum temperatures have increased in the 
20th and 21st centuries and anticipated further climate change 
is likely to have major implications for biodiversity (Kosanic et al., 
2014). Indeed, species with low-temperature requirements have 
already suffered losses in west Cornwall due to rising tempera-
tures (Kosanic et al., 2018).

A strong maritime influence on the regional climate results in a 
narrow range in mean annual temperature and mild winters, with 
some places remaining frost-free throughout the year (Met Office, 
2016). This means that Cornwall and the Isles of Scilly could become 
one of the first places in the UK to be colonised by species charac-
teristic of Mediterranean-type climates as their potential ranges ex-
pand northwards. On the Lizard Peninsula in southern Cornwall, for 
example, species composition has shifted recently in favour of those 
with higher temperature and lower moisture requirements (Maclean 
et al., 2015). Cornwall and the Isles of Scilly, therefore, provide an 
ideal study system for examining how estimates of climate suitability 
may be affected by the aggregation of climate data.

2.2  |  Climate data

The Ecocrop model requires as inputs values for monthly mean and 
minimum temperature and total monthly precipitation. We calcu-
lated monthly mean and minimum temperature from hourly values 
at 100 m spatial resolution, thus, ensuring that temperature minima 
and spatial variation in suitability could be captured effectively.

We obtained hourly 100 m spatial resolution temperature data 
using microclimate modelling techniques and functions in the R 
package ‘microclima’ (Maclean et al., 2019). The steps involved are 
described below.

We first downloaded and extracted for our study region the fol-
lowing coarse-resolution climate data for the years 1984–2017:

1.	 Daily minimum and maximum temperature at 1-km-grid reso-
lution from the UK Met Office (Met Office, 2018);

2.	 Six-hourly sea-level pressure, wind speed and wind direction, and 
specific humidity available at ~200-km-grid resolution from the 
National Weather Surface National Centres for Environmental 
Prediction (NOAA-NCEP; Kanamitsu et al., 2002);

3.	 Hourly surface incoming shortwave (SIS) and direct normal (DNI) 
radiation available at 5-km-grid resolution from the EUMETSAT 
Satellite Application Facility on Climate Monitoring (CMSAF; 
Posselt et al., 2014); and

4.	 Daily mean sea surface temperatures at 25-km-grid resolution 
from the National Oceanic and Atmospheric Administration 
(NOAA; Reynolds et al., 2007).

We then processed these coarse-resolution data to provide the 
inputs necessary to run the microclimate model as follows.

Cloud fractional cover was estimated from radiation data using 
the ‘cloudfromrad’ function. Six-hourly specific humidity and pres-
sure data and daily sea-surface temperature data were interpolated 

to hourly using the native ‘spline’ function of R (R Core Team, 2019) 
and hourly diffuse radiation was calculated from hourly incoming 
shortwave radiation and direct normal radiation multiplied by the 
solar index. We then derived initial hourly temperature values with 
the ‘hourlytemp’ function in ‘microclima’, which took as inputs the 
hourly values for direct and diffuse radiation, hourly humidity and 
pressure and daily maximum and minimum temperature data.

We adjusted these initial hourly temperature values to account 
for mesoclimate effects, including elevation, wind sheltering and 
cold-air drainage. To do this, easterly and northerly wind vectors 
were derived from wind speed and wind direction, which were 
spline interpolated to hourly before back-calculating hourly wind 
speed and direction. Wind speed at 1 m height above the ground 
was calculated using the ‘windcoef’ function, which applies a topo-
graphic shelter coefficient, using elevation, to wind data. Elevation 
data were sourced using the ‘get_dem’ function. We then generated 
an array of land–sea ratios in each of 36 directions and used these 
data to calculate an index of total and upwind coastal exposure as 
described in Maclean et al. (2019). We then fitted thin-plate models 
to the hourly differences between land and sea temperature data at 
1-km resolution with coastal exposure and elevation as covariates 
and applied these models at 100 m to estimate the land–sea tem-
perature differences, and hence also land temperatures at that reso-
lution, using the same procedure described and validated in Maclean 
et al. (2019).

Finally, we ran the microclimate model using ‘runmicro’. Following 
Maclean et al. (2019), the procedure therein models the local differ-
ence in near-ground temperature from ambient temperatures as a 
linear function of net radiation, with the slope of this relationship 
determined by wind speed. Model coefficients were derived auto-
matically using procedures described in Kearney et al. (2020). Net 
radiation is assumed to be affected by terrain and sky view and was 
downscaled using the ‘shortwavetopo’ function in microclima. Final 
hourly microclimate temperatures were calculated by addition of 
temperature anomalies to the land temperature values predicted by 
the thin-plate spline models.

From the final hourly temperature values, we calculated monthly 
mean and minimum temperature values for each year and the av-
erage monthly values for these variables across the periods 1984–
2000 and 2001–2017 to use as inputs to the Ecocrop model.

We calculated monthly total precipitation from daily values at 
100 m spatial resolution. Total daily 1 km gridded precipitation data 
for years 1984–2017 were downloaded from the Met Office HadUK 
dataset (Met Office, 2018) and cropped to our study area. We re-
sampled precipitation values to 100 m spatial resolution using the 
‘resample’ function (Hijmans et al., 2015). We then applied elevation 
corrections to these data by calculating the total monthly precipita-
tion, fitting a thin-plate spline model to these data with 1 km gridded 
elevation as a covariate and, then, applying the model at a 100 m 
spatial resolution using gridded elevation data. This provided higher 
resolution elevation adjusted estimates of total monthly precipita-
tion for each year. We also calculated the average total precipitation 
for each month over periods 1984–2000 and 2001–2017.
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2.3  |  Running the Ecocrop model

We ran the mechanistic climate suitability model Ecocrop as im-
plemented through the R package ‘dismo’ using the function ‘eco-
crop’ (Hijmans et al., 2017). When supplied with values of monthly 
mean and minimum temperature and total monthly precipitation, 
the model calculates a climatic suitability index score based on 
where conditions fall within optimal and absolute ranges of tol-
erance (as documented in the FAO Ecocrop database referenced 
within the package) for the 12 possible growing seasons in a year. 
Suitability scores range from 0 (unsuitable) to 1 (optimally suit-
able). Values above 0 but less than 1 indicate suboptimal, but 
permissible suitability, meaning that both temperature and precip-
itation remain within bounds of absolute tolerance, but are above 
or below the optimal values during the growing season period (see 
Ramirez-Villegas et al. (2013) for a detailed explanation of the 
Ecocrop model).

We ran the ‘ecocrop’ function 36 times under default settings 
for each of the 1631 unique plant species for which environmen-
tal tolerance data are provided in the ‘dismo’ package. All species 
included have been identified to have human use, for example, as 
food, fodder or for energy or industrial purposes. In each model run, 
we changed the climate data (monthly mean and minimum tempera-
ture and total monthly precipitation) used as inputs as follows: on 
the first and second model runs, we used average climate data for 
1984–2000 and 2001–2017, respectively, to estimate average suit-
ability for each period. This meant, for example, that to calculate 
suitability for 1984–2000, the model was supplied with the aver-
age values of monthly mean and minimum temperature and total 
monthly precipitation across the 17-year period. Therefore, using 
average climate data, we obtained estimates of average suitability 
for the two periods after two model runs. The 3rd to 36th model 
runs represented annual model runs for each year, 1984–2017. Each 
model was supplied with monthly mean and minimum temperature 
and monthly precipitation values from that year. For each species, 
we calculated average suitability for each period as the mean of the 
yearly suitability scores for 1984–2000 and 2001–2017. For exam-
ple, to calculate average suitability for 1984–2000, we calculated 
the mean of all yearly suitability scores across this 17-year period. 
In this way, the average suitability scores for each period represent 
each species’ ‘average response’ and capture inter-annual variability 
in climate suitability. In all runs, both model inputs (climate data) and 
model outputs (suitability scores) were in raster format.

We retained for further analysis the results for 255 species with 
average suitability estimates above 0.5 in at least one location in 
at least one period (please see Supporting Information Appendix 1, 
Table A1 for a list of the 255 species). A threshold of 0.5 was cho-
sen because below this value the climate is considered marginal 
(Ramirez-Villegas et al., 2013) and 255 species provided a sample 
size large enough to draw conclusions without dilution of results by 
very low suitability scores.

We produced a raster stack of model outputs for all 255 species 
from average climate data for 1984–2000 and 2001–2017 and took 

the mean across each stack. We repeated this process for the suit-
ability scores from average response data.

2.4  |  Analysis of results

For each 17-year period, we compared estimates of average suit-
ability from average climate and average response data. We then 
tested statistically whether differences between estimates for 
each period were correlated with the inter-annual variability in cli-
mate (coefficient of variation in mean monthly temperature, mini-
mum monthly temperature and total monthly precipitation) during 
the period. Inter-annual variability in temperature and precipitation 
variables was measured using the coefficient of variation (CV) to fol-
low measurements of climate variability used commonly in species 
distribution models (e.g. ANUCLIM; Xu & Hutchinson, 2011). As a 
standardised measure CV gives a comparable value of climate vari-
ability for two time periods with different mean values for each cli-
mate variable and, thus, allows for the effects of climate variability 
on suitability scores to be assessed in a comparable way. We tested 
for correlations using spatially lagged dependent variable (SLX) 
models run on random subsets of 10% of the full dataset to reduce 
spatial autocorrelation. We created a spatial weights matrix for the 
nearest neighbours within 5 km of the centroid of each pixel before 
running a spatially lagged dependent variable (SLX) model using the 
‘lmSLX’ function in the R package ‘spdep’ (Bivand & Wong, 2018). 
We built and plotted correlograms of the SLX model residuals at 
different multiples of the nearest-neighbour distance (up to 50 km) 
and determined the distance at which Moran's I was <=0 (indicating 
no spatial autocorrelation; see Supporting Information Appendix A, 
Figure A5, e.g. correlograms). We repeated this process five times 
with different subsets of the dataset and took the mean distance at 
which Moran's I was <=0. This distance was found to be 20 km for 
both periods. We created a new spatial weights matrix of nearest 
neighbours within 20  km from each pixel centroid and re-ran the 
SLX model 200 times on different subsets of 10% of the full dataset. 
We used the ‘impacts’ function in ‘spdep’ to determine the total ef-
fects for each model and report the mean coefficient, mean stand-
ard error and mean p value across all 200 model runs.

2.5  |  Differences in suitability estimates as 
predicted by climatic requirements

We examined whether differences in suitability estimates could be 
explained by species’ climatic requirements, namely their maximum 
(GMAX) and minimum (GMIN) growing season length requirements, 
optimal (TOPMX) and absolute (TMAX) mean temperature toler-
ance thresholds, optimal (TOPMN) and absolute (TMIN) minimum 
temperature tolerance thresholds, and optimal (ROPMX) and ab-
solute (RMAX) maximum precipitation and optimal (ROPMN) and 
absolute (RMIN) minimum precipitation tolerance thresholds. To do 
this, we used a generalised linear model (GLM) with quasi-binomial 
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error distribution and logit link function. For each species, we calcu-
lated the mean difference in suitability estimates between average 
climate and average response data across both periods. The abso-
lute values of this mean difference were the response variable in 
the GLM and each species’ corresponding threshold values for each 
of the climate variables were the explanatory variables. Sample size 
in the GLM was, therefore, 255 (species). We tested all explana-
tory variables for multicollinearity by assessing variance inflation 
factors (VIF) using the ‘vif’ function in the ‘car’ R package (Fox & 
Weisberg, 2018). All variables had a VIF value of <4 and so multicol-
linearity was not deemed as a threat to the results of our analysis 
(Lavery et al., 2019). Finally, we tested the GLM outcomes against 
the null model using the ‘anova’ function in R and specifying an F 
test. We report these results to evidence the overall significance of 
the model.

All data analyses were carried out in R (R Core Team, 2019).

3  |  RESULTS

For the period 1984–2000, average climate data gave higher esti-
mates of suitability than average response data for 245 of 255 spe-
cies (Figure 2; Supporting Information Appendix 1, Table A1). Mean 
climate suitability across all 255 species (over the full study region) 
was 0.67 for average climate data and 0.58 for average response 
data (Supporting Information Appendix A, Figure A1a-b).

For the period 2001–2017, average climate data gave higher es-
timates of average climate suitability than average response data for 
240 of 255 species (Figure 2; Supporting Information Appendix 1, 
Table A1). Mean climate suitability across all 255 species (over the 
full study region) was 0.71 for average climate data and 0.64 for 
average response data (Supporting Information Appendix A, Figure 
A1c-d).

Differences between suitability estimates across average climate 
and average response data varied spatially. For 1984–2000, some 
of the largest differences were in the north-east, whereas west-
ern coastal areas in the south had some of the smallest differences 
(Figure 3). A similar pattern was observed for 2001–2017, although 
differences between scores were slightly lower overall.

3.1  |  Differences in suitability estimates as 
predicted by climatic variability

Minimum temperatures across Cornwall and the Isles of Scilly 
showed a positive trend in warming from 1984 to 2017 but inter-
annual variability was also high, with any particular year not neces-
sarily experiencing higher minimum temperatures than the previous 
one (Figure 1a,c). Although total annual precipitation did not change 
significantly from 1984 to 2017, inter-annual variation was also evi-
dent (Figure 1c).

For both periods, differences between estimates of suitability 
from average climate and average response data were larger in areas 
more variable in total annual precipitation and minimum and mean 
annual temperature (Table 1). This trend is evident, for example, 
around Land's End (west Cornwall), where inter-annual variability, 
particularly in mean annual temperature and total annual precipita-
tion was low and differences between scores were ~0.01 (Figure 2; 
Supporting Information Appendix A, Figure A2-A4).

3.2  |  Differences in suitability estimates as 
predicted by climatic requirements

Differences in estimates of suitability change were larger for species 
with longer growing seasons and higher minimum temperature and 
minimum precipitation requirements but lower maximum precipita-
tion requirements (Table 2 and Supporting Information Appendix 1, 
Figure A6). When the average climate was closer to optima (>0.6), we 
observed that differences between scores were greater (Supporting 
Information Appendix A, Figure A7).

There was a strong negative correlation between the range of 
temperature tolerance (absolute maximum temperature threshold 
(TMAX) minus absolute minimum temperature threshold (TMIN)) and 
the differences between estimates (GLM, F1,253 = 16.93, p < 0.001; 
Supporting Information Appendix 1, Figure A8). Therefore, differ-
ences were larger for species with smaller thermal niches. There 
was a strong negative correlation between the range of precipita-
tion tolerance (absolute maximum precipitation threshold (RMAX) 

F I G U R E  2  Average climate suitability scores for 1984–2000 and 
2001–2017 using average climate (red) and average response (blue) 
data. Data presented are mean suitability scores across the study 
region for the 255 species analysed. Boxes capture the first (25th 
percentile), second (median) and third (75th percentile) quartiles 
of the data. Upper and lower whiskers extend to the maximum 
and minimum values respectively
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minus absolute minimum precipitation threshold (RMIN)) and the 
differences between estimates (GLM, F1,253  =  32.32, p  <  0.001; 
Supporting Information Appendix 1, Figure A8). Therefore, differ-
ences were larger for species with smaller ranges of precipitation 
tolerance.

4  |  DISCUSSION

It is common to average climate variables over multiple years to 
predict climatic suitability for species within and between periods 
of time and to estimate how climate change may alter their future 
distributions (e.g. Byju et al., 2018; Carter et al., 1996). However, 
suitability can vary substantially year to year in response to climatic 
variation (Diffenbaugh & Scherer, 2013). Due to the nonlinearity of 
biological responses to climate, suitability estimates derived from 
average climate can be biased, and therefore differ from predictions 

made using the average response. In our analysis, we tested the 
extent to which estimates of suitability across two 17-year peri-
ods could be affected by using temporally aggregated climate data 
in a mechanistic climate suitability model. For our study region, we 
found that average climate data were likely to overestimate climate 
suitability, which could lead ultimately to less accurate predictions of 
species’ distributions.

In a previous study, Bateman et al. (2016) reported that mod-
els based on short-term variability rather than long-term average 
climate covariates predicted more accurately the current breeding 
distributions of bird species in the United States. The authors at-
tributed this to average climate data overlooking the negative im-
pacts of short-term environmental variation. Similarly, we found that 
there were larger differences between suitability estimates in areas 
of high climatic variability; scores were biased positively by average 
climate data in these locations, indicating that the negative impact 
of years of poor suitability was not captured by aggregated climate 

F I G U R E  3  Difference in average 
suitability scores between average climate 
and average response data (average 
climate minus average response) for a) 
1984–2017 and b) 2001–2017. Values 
presented are mean differences across all 
255 species
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datasets. Our findings carry additional importance, however, as we 
use a mechanistic model to show this effect, whereas Bateman et al. 
(2016) use a correlative (maximum entropy) model. While the lim-
itations of correlative models are widely reported and understood, 
it is generally considered that mechanistic models are a robust way 
to determine climate suitability because they are based on physi-
ological constraints limiting a species’ distribution and abundance 
(Kearney & Porter, 2009). However, given the differences we ob-
serve between suitability estimates with average climate and aver-
age response data, we conclude that some proximality is lost when 
inter-annual variation is not specifically incorporated into the model. 
This is important to understand as it could reduce model accuracy 
and give misleading predictions about species’ responses to envi-
ronmental change.

4.1  |  Climate change and extremes

Climate change is expected to increase both the frequency and se-
verity of extreme events (Coumou & Rahmstorf, 2012; Jentsch et al., 
2007) and so it could become increasingly important to account for 
the impacts of climate variability when making predictions for future 

periods (Jan et al., 2017). Morán-Ordóñez et al. (2018), for example, 
demonstrate that although models based on long-term averages can 
show similar performance to models that incorporate extremes in 
current data, they predict dramatically different future geographic 
ranges for species under 2070 climate scenarios.

Climate change is also likely to alter average environmental con-
ditions (Collins et al., 2013), which can affect the distribution and 
population dynamics of species (Jentsch & Beierkuhnlein, 2008; 
Jentsch et al., 2007; Parmesan et al., 2000). When changes to long-
term averages and short-term climate variability are experienced 
together, the ecological effects of extreme conditions can be exac-
erbated by a change in the distribution of a related parameter. For 
example, extreme hydrologic drought, coupled with a changing mean 
in atmospheric drought, can lead to an increase in the number of tree 
die-off events compared with when these changes occur in isolation 
(Law et al., 2018). As such, it could be necessary to account for both 
the influence of a changing mean and changing variability in climate 
to predict accurately the possible effects on species’ distributions. 
In our study area, this could mean that it would be most important 
to consider inter-annual variation in suitability in areas that are both 
climatically variable and experiencing high levels of climate change.

4.2  |  Species in marginally suitable areas

Climatic variability increases the likelihood of climatic conditions 
passing lethal thresholds for survival (Ni et al., 2006) and this means 
that species occupying areas near their mean requirements can be 
less sensitive to the same level of climatic variability than species at 
the edge of their range (Swihart et al., 2003). Navarro et al. (2018), 
for example, observed how species closer to their climatic tolerance 
limit were more vulnerable to extreme drought. Species are more 
likely to be living close to their physiological limits at range margins 
(Brook et al., 2009; Parmesan et al., 2000; Thuiller et al., 2008), and 
they can therefore be more sensitive (Thomas et al., 2004) and re-
spond more strongly (Bateman et al., 2016) to short-term climatic 
variability. The tendency for average climate data to underestimate 

TA B L E  1  Predictors of the effect of the inter-annual coefficient 
of variation (%) in total precipitation, mean annual temperature and 
minimum temperature on differences between suitability scores for 
each period (average climate data minus average response data)

Period
Climate variable 
(coefficient of variation, %) Total coefficients

1984–2000 Precipitation 0.0065 (±4.0-e4)***

Minimum temperature 0.017 (±0.003)***

Mean annual temperature 0.84 (±0.06)***

2001–2017 Precipitation 0.0026 (±2.4-e4)***

Minimum temperature 0.0075 (±0.009)*

Mean annual temperature 0.049 (±0.03)*

Note: Statistical significance is shown (*p < 0.05; ***p < 0.001).

Variable reference Variable full name F-statistic

GMIN Minimum growing period length 54.28***

GMAX Maximum growing period length 2.78

TMIN Absolute minimum temperature threshold 12.94***

TOPMN Optimal minimum temperature threshold 29.29***

TOPMX Absolute maximum temperature threshold 1.05

TMAX Optimal maximum temperature threshold 3.22

RMIN Absolute minimum precipitation threshold 39.04***

ROPMN Optimal minimum precipitation threshold 0.65

ROPMX Optimal maximum precipitation threshold 28.52***

RMAX Absolute maximum precipitation threshold 5.28*

Note: Statistical significance indicated as (*p < 0.05; ***p < 0.001; and 0.1).

TA B L E  2  Analysis of variance using 
F-test for generalised linear models 
exploring the difference between 
suitability estimates as predicted by 
species’ tolerance thresholds
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climatic variability could result in poorer suitability predictions for 
individuals in these locations.

It may also be important to account for temporal patterns in suit-
ability when assessing species’ migration potential (Thuiller et al., 
2008). At expanding range margins, climate variability may influence 
strongly the opportunity for species to move into new areas (Higgins 
et al., 2000) and ‘gaps’ in the climate path, which could limit suc-
cessful colonisation, may be missed if variability in climate change 
is unaccounted for (Early & Sax, 2011). Equally, temporally aggre-
gated climate data could overlook opportunities for establishment. 
Serra-Diaz et al. (2016), for example, found that 30-year average es-
timates of seedling survival greatly underestimated the potential for 
establishment for three tree species under climate change scenarios 
compared to estimates considering survival rates over a 3-year pe-
riod. In our study, differences in suitability estimates were high for 
species with long growing seasons and higher minimum tempera-
ture requirements. Examples include saffron (Crocus sativus L.) and 
quince (Cydonia oblonga Mill.), which are not currently widespread in 
Cornwall or the Isles of Scilly, or indeed in the UK, being more com-
monly associated with areas at lower latitudes where temperatures 
are warmer. These species demonstrate the importance of consider-
ing inter-annual variability in climate in areas beyond the dominant 
range of species and where conditions can easily become limiting.

4.3  |  Species with narrow tolerance thresholds

It may be preferable to account for inter-annual variability when 
assessing suitability for species with narrow climatic tolerances. 
The likelihood that species’ absolute thresholds of tolerance will 
be breached will rise with increasing climatic variability, even if 
mean conditions remain favourable (Ni et al., 2006; Vasseur et al., 
2014). Species with small climatic niches are, therefore, predicted 
to be more vulnerable to increasing climatic variability due to cli-
mate change (Foden et al., 2009) and to experience greater changes 
in their distributions because they have less capacity to cope with 
these fluctuations (Van de ven et al., 2007). Trends in climatic suit-
ability can be captured with annual data and, as we show here, av-
erage climate data were more likely to overestimate suitability for 
species with narrow tolerance thresholds.

4.4  |  Direction of the effect of aggregated climate 
data on suitability estimates

Overall, differences between suitability estimates will depend on 
how close the mean climate of a region is to species’ optima. If the 
mean climate is close to the climatic optima for species, and their 
climatic tolerance range is quite low, then averaging climate data are 
likely to result in higher apparent suitability than averaging the re-
sponse. On the other hand, if the average climate is marginal, and 
only suitable in a handful of years, then averaging the response will 
give higher suitability scores. It should be considered how close the 

mean climate is to species’ upper or lower limits of climatic toler-
ance, and therefore whether average climate data may risk over- or 
underestimating climatic suitability, in any cases where biologically 
significant inter-annual variability in climate conditions might exist 
within the period of interest. For the temperate Cornwall climate, 
we expect that suitability was more likely to be negatively affected 
by a cold year than positively affected by a warm year, thus explain-
ing why average climate led to higher estimates of suitability in our 
study (by overestimating minimum temperatures).

4.5  |  Further work

The Ecocrop model considers the favourability of climatic conditions 
during a growing season to calculate a suitability score. Therefore, 
for annual plants, with a single growing season, the model can effec-
tively estimate whether a full life cycle is completed. For perennial 
plants, however, the model is limited in that suitability of a single 
year's growing season may impact growth and survival in subse-
quent years. Whereas this is not problematic for the purposes of 
our study, as precise estimates of suitability were not required or 
necessary to make our comparisons, this limitation should be ac-
knowledged or addressed in any other studies where this is not the 
case. We might suppose, however, particularly given our finding 
here that differences in suitability estimates were larger for species 
with longer growing seasons, that as average climate data cannot 
capture the impacts of climate variability across multiple years, dif-
ferences between suitability estimates derived from average climate 
and average response data would be amplified in longer-lived spe-
cies. We hope that such an effect can be investigated in the future, 
but also that analyses like ours can be extended into other areas 
and for different taxa to develop understanding of the species and 
circumstances under which negative impacts of climate data aggre-
gation on model accuracy are likely to be greatest.

5  |  CONCLUSION

Climate change will alter species distributions in both natural 
(Thomas et al., 2004) and cultivated (Leemans & Solomon, 1993) 
systems. Recent trends in global warming and altered precipitation 
patterns (event number, frequency and intensity) will continue re-
gardless of any mitigation strategy to reduce anthropogenic green-
house gas emissions (Collins et al., 2013), and it is therefore timely 
that we enhance the ability to predict how future climate change 
may affect global biodiversity. We show that a mechanistic model 
run with temporally aggregated climate data may fail to capture 
the effects of inter-annual variation on estimates of climate suit-
ability. We suggest that, because species responses to climate are 
often nonlinear, average response data are used wherever possible. 
However, this could be particularly important for species in areas 
where the climate is highly variable, especially if mean conditions 
are favourable, for species living at the upper or lower limits of their 
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climatic range, and for species with narrow tolerance thresholds. 
Estimating climatic suitability in a way that can account for inter-
annual trends could help to predict more reliably how climate change 
may affect species distributions.
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